亚洲十八**毛片_亚洲综合影院_五月天精品一区二区三区_久久久噜噜噜久久中文字幕色伊伊 _欧美岛国在线观看_久久国产精品毛片_欧美va在线观看_成人黄网大全在线观看_日韩精品一区二区三区中文_亚洲一二三四区不卡

代做MATH1033、代寫c/c++,Java程序語言

時間:2024-05-11  來源:  作者: 我要糾錯



The University of Nottingham
SCHOOL OF MATHEMATICAL SCIENCES
SPRING SEMESTER 2023-2024
MATH1033 - STATISTICS
Your neat, clearly-legible solutions should be submitted electronically via the MATH1033 Moodle page by
18:00 on Wednesday 8th May 2024. Since this work is assessed, your submission must be entirely your
own work (see the University’s policy on Academic Misconduct). Submissions made more than one week
after the deadline date will receive a mark of zero. Please try to make your submission by the deadline.
General points about the coursework
1. Please use R Markdown to produce your report.
2. An R Markdown template file to get you started is available to download from Moodle. Do make use of
this, besides reading carefully the Hints and Tips section below.
3. Please submit your report a self-contained html file (i.e. as produced by R Markdown) or pdf.
4. If you have any queries about the coursework, please ask me by email (of course, please limit this to
requests for clarification; don’t ask for any of the solution nor post any of your own).
Your task
The data file scottishData.csv contains a sample of the ”Indicator” data that were used to compute the 2020
Scottish Index of Multiple Deprivation (SIMD), a tool used by government bodies to support policy-making. If
you are interested, you can see the SIMD and find out more about it here: https://simd.scot
Once you have downloaded the csv file, and once you’ve set the RStudio working directory to wherever you
put the file, you can load the data with dat <- read.csv(”scottishData.csv”) The file contains data for a sample
of 400 ”data zones” within Scotland. Data zones are small geographical areas in Scotland, of which there
are 6,976 in total, with each typically containing a population of between 500 and 1000 people. Of the 400
observations within the data file, 100 are from the Glasgow City, 100 are from City of Edinburgh, and 200
are from elsewhere in Scotland. Glasgow and Edinburgh are the two largest cities in Scotland by population.
Table 1 shows a description of the different variables within the data set.
Your report should have the following section headings: Summary, Introduction, Methods, Results, Conclusions.
For detailed guidance, read carefully section page 4 of the notes, and the ”How will the report be marked?”
section below.
The Results section of your report should include subsections per points 1-3 as follows. The bullet points
indicate what should be included within these subsections, along with suitable brief commentary.
MATH1033 Turn Over
2 MATH1010
1. A comparison of employment rate between Glasgow and Edinburgh.
• A single plot with side-by-side boxplots for the Employment_rate variable for each of
Glasgow and Edinburgh.
• A histogram of the Employment_rate variable with accompanying normal QQ plot, for
each of Glasgow and Edinburgh.
• Sample means and variances of the Employment_rate variable for the data zones in
each of Glasgow and Edinburgh.
• Test of whether there is a difference in variability of Employment_rate scores between
Glasgow and Edinburgh.
• Test of whether there is a difference in means of Employment_rate scores between
Glasgow and Edinburgh.
2. Investigation into how Employment_rate and other variables are associated.
• A matrix of pairwise scatterplots for the following variables: Employment_rate,
Attainment, Attendance, ALCOHOL, and Broadband. Also present pairwise correlation
coefficients between these variables.
• A regression of Employment_rate on Attendance, including a scatterplot showing a line
of best fit.
3. A further investigation into a respect of your choosing.
• It’s up to you what you choose here. Possible things you could consider are: considering
an analysis similar to 1 above, but involving the data on data zones outside of Glasgow
and Edinburgh; considering whether what you find in investigations in 2 above are
similar if you consider whether the data zones are from Glasgow, Edinburgh or elsewhere;
investigating the other variables in the data set besides these in 1 and 2.
• Note that some variables will be very strongly correlated, but with fairly obvious/boring
explanation: for example “rate” variables (see Table 1) are just “count” variables
divided by population size, and data zones are designed to have similar population
sizes.
• Think freely and creatively about what is interesting to investigate, especially how you
could make good use of the methods that you are learning in the module.
Please include as an appendix the R code to produce the results in your report, but don’t include
R code or unformatted text/numerical output in the main part of the report itself.
Hints and tips:
1. Use the template .Rmd file provided on Moodle as your starting point.
2. Read carefully “How will the report be marked?” below. Then re-read it again once again
just before you submit to make sure you have everything in place.
3. You may find the subset command useful. Some examples:
• glasgow <- subset(dat, Council_area == "Glasgow City") defines a new variable containing
data only for Glasgow.
• subset(dat, (Council_area != "City of Edinburgh" & Council_area != "Glasgow City"))
finds the data zones that are not in either Edinburgh or Glasgow.
4. The command names(dat) will tell you the names of the variables (columns) in dat.
5. dat(,c(16,17,18)) will pick out just the 16th, 17th, 18th column (for example).
MATH1010
[ ]
m
( ]
⑧m
3 MATH1010
6. The pairs() function produces a matrix of pairwise scatterplots. cor() computes pairwise
correlation coefficients.
7. Do make sure that figures have clear titles, axis labels, etc
MATH1010 Turn Over
.
4 MATH1010
How will the report be marked?
The marking criteria and approximate mark allocation are as follows:
Summary [4 marks] - have you explained (in non-technical language) (a) the aim of the analysis;
(b) (very briefly) the methods you have used; and (c) the key findings?
Introduction [5] - have you (a) explained the context, talked in a bit more detail about the aim;
(b) given some relevant background information; (c) described the available data; (d) explained
why the study is useful/important?
Methods [3] - have you described the statistical techniques you have used (in at least enough
detail that a fellow statistician can understand what you have done)?
Results [14, of which 7 are for the investigation of your choosing mentioned in point 3 above] -
have you presented suitable graphical/numerical summaries, tests and results, and interspersed
these with text giving explanation?
Conclusions [4] - have you (a) recapped your key findings, (b) discussed any limitations, and
(c) suggested possible further extensions of the work?
Presentation [10] - overall, does the report flow nicely, is the writing clear, and is the presentation
tidy (figures/tables well labelled and captioned)? Has Markdown been used well?
MATH1010
5 MATH1010
Table 1: A description of the different variables. “Standardised ratio” is such that a value of 100
is the Scotland average for a population with the same age and sex profile.
MATH1010 End

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp



















 

標(biāo)簽:

掃一掃在手機打開當(dāng)前頁
  • 上一篇:COMP2017代寫、代做Python/Java程序
  • 下一篇:CMT219代寫、代做Java程序語言
  • 代做CSCI 2525、c/c++,Java程序語言代寫
  • COMP 315代寫、Java程序語言代做
  • 昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級風(fēng)景名勝區(qū)
    昆明西山國家級風(fēng)景名勝區(qū)
    昆明旅游索道攻略
    昆明旅游索道攻略
  • 短信驗證碼平臺 理財 WPS下載

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網(wǎng) 版權(quán)所有
    ICP備06013414號-3 公安備 42010502001045

    视频一区二区欧美| 女囚岛在线观看| 黄色av免费在线观看| 深夜国产在线播放| av日韩一区| 欧美日韩亚洲一区二区三区在线| 麻豆精品在线播放| 亚洲色图视频免费播放| 6080yy午夜一二三区久久| 亚洲日本va中文字幕久久| 美洲精品一卡2卡三卡4卡四卡| 一区二区在线视频观看| 亚洲久久一区| 国产亚洲精久久久久久| 欧美日韩国产三级| av在线中文| 波多野结衣欧美| 日韩在线卡一卡二| 成人欧美一区二区三区黑人麻豆 | 在线天堂av| 欧美亚洲黄色| 国产精品资源| 亚洲欧洲成人av每日更新| 先锋成人影院| 波多野结衣亚洲| 国产精品hd| 亚洲美腿欧美偷拍| 激情视频免费观看在线| 日本免费成人| 日本大胆欧美人术艺术动态| 一级特黄大欧美久久久| 台湾av在线二三区观看| av在线播放一区二区| 日韩精品国产精品| 污片在线观看一区二区| 国产视频第一页在线观看| 在线日韩成人| 国产精品69毛片高清亚洲| 欧美日韩中文字幕一区二区| 色呦呦在线看| 国产精品第十页| 亚洲午夜免费电影| 精品欧美不卡一区二区在线观看 | 本田岬高潮一区二区三区| 91激情五月电影| 91麻豆一二三四在线| 国产精品久久久久蜜臀| 国产精品久久久久久久久动漫| 97影院理论午夜| 亚洲第一影院| 久久91精品久久久久久秒播| 91精品国模一区二区三区| 操人在线观看| 久久精品综合| 欧美日韩久久久一区| 538在线精品| 日韩va欧美va亚洲va久久| 精品视频免费看| 蜜桃视频在线观看播放| 日韩国产欧美在线观看| 欧美一区中文字幕| 九七影院97影院理论片久久| 国产盗摄精品一区二区三区在线| 欧美精品18+| 自拍偷拍亚洲| 久久欧美一区二区| 污网站在线看| 欧美在线观看天堂一区二区三区| 亚洲不卡在线观看| а√天堂8资源在线| 久久天堂精品| 精品国产乱码久久久久久久 | 午夜免费久久看| 欧美三级网站| 国产成人自拍在线| 在线看国产视频| 综合亚洲视频| 欧美军同video69gay| 成人51免费| 国产精品美女久久久久久2018| 日本在线免费网| 天堂成人免费av电影一区| 精品sm在线观看| 精品国产网站| 色婷婷av久久久久久久| 国产一区高清| 中文字幕av一区二区三区高| 黄a在线观看| 精品影院一区二区久久久| 波多野结衣av在线播放| 亚洲成人三区| 欧美精品高清视频| 日本欧美高清| 性感美女久久精品| 欧洲精品久久久久毛片完整版| 久久美女艺术照精彩视频福利播放| а天堂8中文最新版在线官网| 西西裸体人体做爰大胆久久久| 精品欧美一区二区在线观看| 国产乱码精品一区二区亚洲| 在线看国产一区| 日韩精品久久久久久久软件91| 亚洲欧洲在线观看av| 日本综合字幕| 国产精品欧美经典| 另类图片综合电影| 国产精品热久久久久夜色精品三区| 欧洲在线视频| 久久影院午夜片一区| 欧洲黄色一区| 久久久不卡影院| 在线日韩影院| 国产精品拍天天在线| 日韩电影免费观| 亚洲麻豆国产自偷在线| 在线日韩影院| 亚洲免费观看高清在线观看| 亚洲精品一区av| 精品magnet| 亚洲日本三级| 精品福利一二区| 亚洲欧洲视频| 欧美美女搞黄| 粉嫩蜜臀av国产精品网站| 成人免费视屏| 国产亚洲污的网站| 欧美国产日韩电影| 调教+趴+乳夹+国产+精品| 亚洲日产av中文字幕| 欧美不卡视频一区| 香蕉久久国产| 福利在线视频导航| 91免费版在线| 99久热在线精品视频观看| 在线一区二区三区| 亚洲综合五月| 小水嫩精品福利视频导航| 国产v综合v亚洲欧| 欧美男体视频| 午夜不卡在线视频| 忘忧草在线影院两性视频| 激情综合色综合久久| 亚洲色图图片| 激情欧美日韩| 午夜电影亚洲| 亚洲国产免费看| 激情综合五月婷婷| 91亚洲国产成人精品一区二三 | 黄色在线免费观看网站| 欧美视频一区二区三区四区| 成人国产精品免费网站| 成人在线免费观看91| 国产在线高清理伦片a| 全部孕妇毛片丰满孕妇孕交| 国产精品久久久久精k8 | 亚洲欧美日韩电影| 午夜精品亚洲| 国产欧美一区二区三区精品酒店| 午夜3点看的视频| 91精品国产高久久久久久五月天| 1插菊花综合| 国产精品免费视频一区| 自拍欧美日韩| 色先锋久久影院av| 天然素人一区二区视频| 欧美巨大xxxx做受沙滩| 欧美亚洲禁片免费| 激情五月婷婷综合| 日韩av在线发布| 国产精品一区亚洲| 中日韩免视频上线全都免费| 午夜日韩电影| 国产成人免费av在线| 亚洲综合自拍偷拍| 日韩欧美一级特黄在线播放| eeuss影院www在线观看| 污污的视频在线观看| 国产1区在线| 播放一区二区| 精品国产第一国产综合精品| 亚洲天堂av在线| 成人影院在线免费观看| 福利视频在线导航| 日本福利午夜视频在线| 麻豆免费网站| 97福利电影| 日韩私人影院| 欧美日韩大片| 最新av在线播放| 午夜视频国产| 日本a级黄色| 91大神影片| 超碰在线caoporn| 手机在线理论片| free性m.freesex欧美| 无圣光视频在线观看| www在线播放| 永久免费毛片在线播放| 欧美精品密入口播放| 免费电影日韩网站|