亚洲十八**毛片_亚洲综合影院_五月天精品一区二区三区_久久久噜噜噜久久中文字幕色伊伊 _欧美岛国在线观看_久久国产精品毛片_欧美va在线观看_成人黄网大全在线观看_日韩精品一区二区三区中文_亚洲一二三四区不卡

代做COCMP5328、代寫Python設計程序

時間:2024-05-07  來源:  作者: 我要糾錯



COCMP5328 - Advanced Machine Learning 
Assignment 1 
This assignment is to be completed in groups of 2 to 3 students. It is worth 25% of your 
total mark. 
1 Objective 
The objective of this assignment is to implement Non-negative Matrix Factorization 
(NMF) algorithms and analyze the robustness of NMF algorithms when the dataset is 
contaminated by large magnitude noise or corruption. More specifically, you should 
implement at least two NMF algorithms and compare their robustness. 
2 Instructions 
2.1 Dataset description 
In this assignment, you need to apply NMF algorithms on two real-world face image 
datasets: (1) ORL dataset
1; (2) Extended YaleB dataset
2

• ORL dataset: it contains 400 images of 40 distinct subjects (i.e., 10 images per 
subject). For some subjects, the images were taken at different times, varying the 
lighting, facial expressions, and facial details (glasses / no glasses). All the images 
were taken against a dark homogeneous background with the subjects in an 
upright, frontal position. All images are cropped and resized to 92×112 pixels. 
• Extended YaleB dataset: it contains 2414 images of 38 subjects under 9 poses 
and 64 illumination conditions. All images are manually aligned, cropped, and 
then resized to 168×192 pixels. 
 
     1    https://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html    
2    http://vision.ucsd.edu/    iskwak/ExtYaleDatabase/ExtYaleB.html    2    
Figure 1: An example face image and its occluded versions by b × b-blocks with b = 
10,12, and 14 pixels. 
Note: we provide a tutorial for this assignment, which contains example code for 
loading a dataset to numpy array. Please find more details in assignment1.ipynb. 
2.2 Assignment tasks 
1. You need to implement at least two Non-negative Matrix Factorization (NMF) 
algorithms: 
• You should implement at least two NMF algorithms with at least one not 
taught in this course (e.g., L1-Norm Based NMF, Hypersurface Cost Based 
NMF, L1-Norm Regularized Robust NMF, and L2,1-Norm Based NMF). 
• For each algorithm, you need to describe the definition of cost function as 
well as the optimization methods used in your implementation. 
2. You need to analyze the robustness of each algorithm on two datasets: 
• You are allowed to design your own data pre-processing method (if 
necessary). 
• You need to use a block-occlusion noise similar to those shown in Figure 1. 
The noise is generated by setting the pixel values to be 255 in the block. You 
should design your own value for b (not necessary to be 10,12 or 14). You 
are also encouraged to design your own noise other than the block-occlusion 
noise. 
• You need to demonstrate each type of noise used in your experiment (show 
the original image as well as the image contaminated by noise). 
• You should carefully choose the NMF algorithms and design experiment 
settings to clearly show the different robustness of the algorithms you have 
implemented. 
3. You are only allowed to use the python standard library, numpy and scipy (if 
necessary) to implement NMF algorithms. 3    
2.3 Programming and External Libraries Python
This assignment is required to be finished by 3. When you implement NMF 
algorithms, you are not allowed to use external libraries which contains NMF 
implementations, such as scikit-learn, and Nimfa (i.e., you have to implement the NMF 
algorithms by yourself). You are allowed to use scikit-learn for evaluation only (please 
find more details in assignment1.ipynb). If you have any ambiguity whether you can 
use a particular library or a function, please post on canvas under the Assignment 1 
thread. 
2.4 Evaluate metrics 
To compare the performance and robustness of different NMF algorithms, we provide 
three evaluation metrics: (1) Root Means Square Errors; (2) Average Accuracy; (3) 
Normalized Mutual Information. For all experiments, you need to use at least two 
metrics, i.e., Root Means Square Errors and Average Accuracy. 
• Root Means Square Errors (RMSE): let X denote the contaminated dataset (by 
adding noise), and      ̂ denote the clean dataset. Let   and   denote the 
factorization results on      ̂ , the Root Means Square Errors then can be defined 
as follows: 
(1) 
• Average Accuracy: You need to perform some clustering algorithms (i.e., Kmeans)
with num clusters equal to num classes. Each example is assigned with 
the cluster label (please find more details in assignment1.ipynb). Lastly, you can 
evaluate the accuracy of predictions Ypred as follows: 
 (3) 
where I(·,·) is mutual information and H(·) is entropy. 
Note: we expect you to have a rigorous performance evaluation. To provide an estimate 
of the performance of the algorithms in the report, you can repeat multiple times (e.g., 
5 times) for each experiment by randomly sampling 90% data from the whole dataset 
and average the metrics on different subset. You are also required to report the standard 
deviations. 4    
3 Report 
The report should be organized like research papers, and should contain the following 
sections: 
• In abstract, you should briefly introduce the topic of this assignment and describe 
the organization of your report. 
• In introduction, you should first introduce the main idea of NMF as well as its 
applications. You should then give an overview of the methods you want to use. 
• In related work, you are expected to review the main idea of related NMF 
algorithms (including their advantages and disadvantages). 
• In methods, you should describe the details of your method (including the 
definition of cost functions as well as optimization steps). You should also 
describe your choices of noise and you are encouraged to explain the robustness 
of each algorithm from theoretical view. 
• In experiment, firstly, you should introduce the experimental setup (e.g., datasets, 
algorithms, and noise used in your experiment for comparison). 
Second, you should show the experimental results and give some comments. 
• In conclusion, you should summarize your results and discuss your insights for 
future work. 
• In reference, you should list all references cited in your report and formatted all 
references in a consistent way. 
The layout of the report: 
• Font: Times New Roman; Title: font size 14; Body: font size 12 
• Length: Ideally 10 to 15 pages - maximum 20 pages 
Note: You are encouraged to use LaTeX. Optionally, a MS-Word template is provided. 
4 Submissions 
The submission contains two parts: source code and report. Detailed instructions are 
as follows: 
1. Go to Canvas and upload the following files. 5    
1. report (a pdf file): the report should include each member’s details 
(student id and name). 
2. code (a folder) as zip file 
i. algorithm (a sub-folder): your code could be multiple files inside 
algorithm sub-folder. 
ii. data (an empty sub-folder): although two datasets should be inside the 
data folder, please do not include them in the zip file. We will copy two 
datasets to the data folder when we test the code. 
2. Only one student needs to submit the report as pdf file and code as zip file which 
must be named as student ID numbers of all group members separated by 
underscores. 
E.g., “xxxxx_xxxxx_xxxxx_code.zip and xxxxx_xxxxx_xxxxx_report.pdf”. 
3. Your submission should include the report and the code. A plagiarism checker 
will be used. 
4. You need to clearly provide instructions on how to run your code in the appendix 
of the report. 
5. Indicate the contribution of each group member. 
6. A penalty of minus 1.25 (5%) marks per each day after due (email late 
submissions to TA and confirm late submission dates with TA). Maximum delay 
is 5 days, Assignments more than 5 days late will get 0. 
 
5 Plagiarism 
• Please read the University Policy on Academic Honesty carefully: 
http://sydney.edu.au/elearning/student/EI/academic_honesty.shtml 
• All cases of academic dishonesty and plagiarism will be investigated. 
• There is a new process and a centralised University system and database. 
• Three types of offences: 
1. Plagiarism – When you copy from another student, website or other 
source. This includes copying the whole assignment or only a part of it. 
2. Academic Dishonesty – When you make your work available to another 
student to copy (the whole assignment or a part of it). There are other 
examples of academic dishonesty. 6    
3. Misconduct - When you engage another person to complete your 
assignment (or a part of it), for payment or not. This is a very serious 
matter, and the Policy requires that your case is forwarded to the 
University Registrar for investigation. 
• The penalties are severe and include: 
1. A permanent record of academic dishonesty, plagiarism, and misconduct 
in the University database and on your student file. 
2. Mark deduction, ranging from 0 for the assignment to Fail for the course. 
3. Expulsion from the University and cancelling of your student visa. 
• When there is copying between students, note that both students are penalised – 
the student who copies and the student who makes his/her work available for 
copying. 
• It is noted that only 30% (including references) is acceptable. The high 
plagiarism will be reported to the school. 
 
 7    
6 Marking scheme 
Category Criterion Marks Comments 
Report [20] Abstract [0.75] 
•Problem, methods, organization. 
Introduction [1.25] 
•What is the problem you intend to solve? 
•Why is this problem important? 
Previous work [1.5] 
•Previous relevant methods used in literature? 
Methods [6.25] 
•Pre-processing (if any) •NMF 
Algorithm’s formulation. 
•Noise choice and description. 
Experiments and Discussions [6.25] 
•Experiments, comparisons, and evaluation 
•Extensive analysis and discussion of results 
•Relevant personal reflection 
Conclusions and Future work [0.75] 
•Meaningful conclusions based on results 
•Meaningful future work suggested 
Presentation [1.25] 
•Grammatical sentences, no spelling mistakes 
•Good structure and layout, consistent 
formatting 
•Appropriate citation and referencing 
•Use graphs and tables to summarize data 
Other [2] 
•At the discretion of the marker: for impressing 
the marker, excelling expectation, etc. 
Examples include clear presentation, welldesigned
experiment, fast code, etc. 
 8    
Code [5] 
•Code runs within a feasible time 
•Well organized, commented and documented 
 
Penalties [−] 
•Badly written code: [−5] 
•Not including instructions on how to run your 
code: [−5] 
 
Note: Marks for each category is indicated in square brackets. The minimum mark for the assignment will be 0 (zero). 

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp























 

標簽:

掃一掃在手機打開當前頁
  • 上一篇:代寫COMP4403、代做Java編程語言
  • 下一篇:COMP1212代寫、代做Java/c++程序設計
  • 無相關信息
    昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級風景名勝區
    昆明西山國家級風景名勝區
    昆明旅游索道攻略
    昆明旅游索道攻略
  • 短信驗證碼平臺 理財 WPS下載

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    亚洲欧美日韩国产一区二区三区| 狠狠干五月天| 久久中文字幕导航| 青青草视频在线免费直播| 欧美午夜影院一区| 欧美日韩国产一区中文午夜| 亚洲一区国产| 国产免费av高清在线| av不卡在线播放| 亚洲男男av| 日韩美女天天操| 国产日韩精品视频一区二区三区 | 日本18视频网站| 91cn在线观看| 电影亚洲一区| 中文精品电影| 国产视频一区二区三区在线观看| 亚洲免费观看高清| 玉米视频成人免费看| 中文字幕不卡在线播放| 成人av电影在线网| 成人免费视频视频| 久久成人羞羞网站| 欧美天堂亚洲电影院在线观看 | 国产色爱av资源综合区| 秋霞一区二区| 天天噜噜噜噜噜噜| 91蜜桃免费观看视频| 国产成+人+综合+亚洲欧美| 色网综合在线观看| 人人精品人人爱| 日韩a级大片| a日韩av网址| 日韩成人一区二区三区在线观看| 亚洲激情男女视频| 屁屁影院在线观看| 一区二区亚洲视频| 精品淫伦v久久水蜜桃| 欧美与亚洲与日本直播| 91在线视频| 四虎4545www国产精品| se01亚洲视频| 欧美日韩有码| 精品国产黄a∨片高清在线| 日韩伦理在线一区| a免费在线观看| 日韩欧美中文字幕一区二区三区| 韩国午夜理伦三级不卡影院| 日韩成人a**站| 免费一区二区视频| 国产精品99久久不卡二区| 国产夫妻在线| 成人黄18免费网站| 幼a在线观看| 麻豆传媒视频在线观看免费| 免费人成在线观看网站| 中国av在线播放| 99这里只有精品视频| 午夜在线a亚洲v天堂网2018| 91视频在线看| 日韩美女在线视频| 色网站免费在线观看| 精品欧美午夜寂寞影院| 久久99日本精品| 色综合久久综合网欧美综合网| 久草在线在线| 色999韩欧美国产综合俺来也| 亚洲欧洲日本一区二区三区| 亚洲四区在线观看| 宅男视频免费在线观看视频| 韩国三级成人在线| 韩国一区二区视频| 欧美一区二区三区电影| 九色porny丨国产首页在线| 综合一区在线| 亚洲一二三区不卡| av在线中文| 国产精品久久久久久久久妇女| 欧美激情一区二区三区四区| 原千岁中文字幕| 精品视频一区二区三区| 国产成人av一区二区三区在线 | www久久精品| 免费成年网站| 91亚洲无吗| 久久综合成人精品亚洲另类欧美 | 成人免费毛片嘿嘿连载视频…| 亚洲国产一区二区三区a毛片| 亚洲精品国产第一综合99久久 | 在线免费日韩| 亚洲深夜福利在线观看| 国产亚洲欧美在线| 亚亚洲欧洲精品| 日本一二区不卡| 亚洲国产精品久久人人爱| 黄网站视频在线观看| 在线日本成人| 欧美精品一二三四| 久久久成人av毛片免费观看| 狠狠狠色丁香婷婷综合久久五月| 日韩一区二区不卡| 东京久久高清| 亚洲欧洲日本在线| 九义人在线观看完整免费版电视剧| 亚洲精品a级片| 精品福利在线视频| 超碰一区二区| av电影在线观看完整版一区二区| 在线色视频观看| 香蕉视频国产精品 | 欧美性高潮床叫视频| 美女av在线免费看| 国产精品一区二区无线| 波多野结衣中文字幕在线| 日韩欧美视频在线播放| 日韩欧美在线视频| 成人亚洲视频| 久久久国产精华| 国产原创视频在线观看| 久久国产日韩欧美精品| 羞羞小视频在线观看| 精品国产午夜| 欧美视频一区二区| 六月丁香久久丫| 亚洲www啪成人一区二区麻豆| 欧美黑人粗大| 99re在线精品| 麻豆av在线| 99久久这里有精品| 一区二区三区四区在线播放 | 91精品动漫在线观看| 三级影片在线观看欧美日韩一区二区| 久久一二三国产| 午夜电影福利| 一区二区在线免费播放| 久久久综合网站| 日本不卡三区| 国产麻豆午夜三级精品| yjizz视频网站在线播放| 久久精品国产色蜜蜜麻豆| 夜鲁很鲁在线视频| 蜜芽一区二区三区| 蜜桃视频在线观看www社区| 国v精品久久久网| 男女免费观看在线爽爽爽视频| 成人午夜电影小说| 97久久人人超碰caoprom| 国产欧美日韩视频在线观看| 欧美天堂视频| 午夜精品久久久久久久久久久| 国产欧美啪啪| 日韩情涩欧美日韩视频| 亚洲国产黄色| 男生女生差差差的视频在线观看| 韩国一区二区三区| 国产无遮挡裸体视频在线观看| 《视频一区视频二区| jazzjazz国产精品久久| 在线综合亚洲欧美在线视频| 亚洲最新av| 日本福利片高清在线观看| 国产一区二区三区免费看| av资源中文在线天堂| 亚洲一区二三区| 精品理论电影| 一本到av在线| 99久久99久久久精品齐齐| 国产69精品久久久久9999人| 色综合久久久久综合体| 一个色综合网| 大乳在线免费观看| 国产精品看片你懂得| 欧美爱爱网站| 亚色视频在线播放| 99久久国产综合精品麻豆| 国产麻豆一区二区三区| 日韩一区二区三区视频在线| 日韩在线一区二区| 女海盗2成人h版中文字幕| 色综合视频一区二区三区高清| 午夜久久黄色| 国产精品剧情一区二区在线观看| 亚洲免费三区一区二区| 欧美一站二站| 992tv免费直播在线观看| 亚洲人成影院在线观看| 999久久久国产精品| 自拍视频在线网| 亚洲一二三区在线观看| 欧美日韩蜜桃| 国产精品一品| 欧美精选午夜久久久乱码6080| 久久精品三级| 素人一区二区三区| 爽死777影院| 久久综合成人精品亚洲另类欧美| 丝袜美腿一区二区三区动态图| 天堂成人在线| 国产一级片在线| 久久亚洲影视婷婷|