亚洲十八**毛片_亚洲综合影院_五月天精品一区二区三区_久久久噜噜噜久久中文字幕色伊伊 _欧美岛国在线观看_久久国产精品毛片_欧美va在线观看_成人黄网大全在线观看_日韩精品一区二区三区中文_亚洲一二三四区不卡

代寫COMP34212、代做Python/c++程序設計

時間:2024-04-29  來源:  作者: 我要糾錯



COMP34212 Cognitive Robotics Angelo Cangelosi
COMP34212: Coursework on Deep Learning and Robotics
34212-Lab-S-Report
Submission deadline: 18 April 2024, 18:00 (BlackBoard)
Aim and Deliverable
The aim of this coursework is (i) to analyse the role of the deep learning approach within the
context of the state of the art in robotics, and (ii) to develop skills on the design, execution and
evaluation of deep neural networks experiments for a vision recognition task. The assignment will
in particular address the learning outcome LO1 on the analysis of the methods and software
technologies for robotics, and LO3 on applying different machine learning methods for intelligent
behaviour.
The first task is to do a brief literature review of deep learning models in robotics. You can give a
summary discussion of various applications of DNN to different robotics domains/applications.
Alternatively, you can focus on one robotic application, and discuss the different DNN models used
for this application. In either case, the report should show a good understanding of the key works in
the topic chosen.
The second task is to extend the deep learning laboratory exercises (e.g. Multi-Layer Perceptron
(MLP) and/or Convolutional Neural Network (CNN) exercises for image datasets) and carry out and
analyse new training simulations. This will allow you to evaluate the role of different
hyperparameter values and explain and interpret the general pattern of results to optimise the
training for robotics (vision) applications. You should also contextualise your work within the state
of the art, with a discussion of the role of deep learning and its pros and cons for robotics research
and applications.
You can use the standard object recognition datasets (e.g. CIFAR, COCO) or robotics vision datasets
(e.g. iCub World1, RGB-D Object Dataset2). You are also allowed to use other deep learning models
beyond those presented in the lab.
The deliverable to submit is a report (max 5 pages including figures/tables and references) to
describe and discuss the training simulations done and their context within robotics research and
applications. The report must also include on online link to the Code/Notebook within the report,
or ad the code as appendix (the Code Appendix is in addition to the 5 pages of the core report). Do
not use AI/LLM models to generate your report. Demonstrate a credible analysis and discussion of
1 https://robotology.github.io/iCubWorld/
2 https://rgbd-dataset.cs.washington.edu/index.html
COMP34212 Cognitive Robotics Angelo Cangelosi
your own simulation setup and results, not of generic CNN simulations. And demonstrate a
credible, personalised analysis of the literature backed by cited references.
Marking Criteria (out of 30)
1. Contextualisation and state of the art in robotics and deep learning, with proper use of
citations backing your academic brief review and statements (marks given for
clarity/completeness of the overview of the state of the art, with spectrum of deep learning
methods considered in robotics; credible personalised critical analysis of the deep learning
role in robotics; quality and use of the references cited) [10]
2. A clear introductory to the DNN classification problem and the methodology used, with
explanation and justification of the dataset, the network topology and the hyperparameters
chosen; Add Link to the code/notebook you used or add the code in appendix. [3]
3. Complexity of the network(s), hyperparameters and dataset (marks given for complexity
and appropriateness of the network topology; hyperparameter exploration approach; data
processing and coding requirements) [4]
4. Description, interpretation, and assessment of the results on the hyperparameter testing
simulations; include appropriate figures and tables to support the results; depth of the
interpretation and assessment of the quality of the results (the text must clearly and
credibly explain the data in the charts/tables); Discussion of alternative/future simulations
to complement the results obtained) [13]
5. 10% Marks lost if report longer than the required maximum of 5 pages: 10% Marks lost if
code/notebook (link to external repository or as appendix) is not included.
Due Date: 18 April 2024, h18.00, pdf on Blackboard. Use standard file name: 34212-Lab-S-Report

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp















 

標簽:

掃一掃在手機打開當前頁
  • 上一篇:ENGI 1331代做、代寫R程序語言
  • 下一篇:代做FINM7008、代寫FINM7008 Applied Investments
  • 無相關信息
    昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級風景名勝區
    昆明西山國家級風景名勝區
    昆明旅游索道攻略
    昆明旅游索道攻略
  • 短信驗證碼平臺 理財 WPS下載

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    丰满少妇一区| 成人精品一区二区三区免费| 国产成a人亚洲精| 日韩精品网站| 在线观看国产视频| 国产成人av在线影院| 国产精品腿扒开做爽爽爽挤奶网站| 97久久中文字幕| 狠色狠色综合久久| 久久99蜜桃精品| 亚洲国产欧美另类丝袜| 在线视频一区二区三区| 玖玖综合伊人| 美女毛片在线看| 欧美一区二区网站| 狠狠久久亚洲欧美| 国产一区不卡精品| 久久成人国产| 免费观看日韩av| 里番精品3d一二三区| 日韩午夜影院| 日韩午夜在线播放| 国产毛片在线| 免费在线视频一级不卡| 最近中文字幕mv免费高清在线| 涩涩视频免费网站| 欧美日韩一区中文字幕| 欧美激情在线精品一区二区三区| 国产精品欧美日韩一区| 日韩av在线播放网址| 粉嫩在线一区二区三区视频| 在线播放亚洲一区| 美女国产在线| 免费成人av在线| 亚洲图片你懂的| 久草影视在线| 蜜桃av在线免费观看| a天堂中文在线| 免费av网页| 中国动漫在线观看完整版免费| 国产天堂在线观看| 精品美女在线观看视频在线观看| 69av一区二区三区| 国产精品毛片久久久久久 | 91视视频在线直接观看在线看网页在线看| 丁香亚洲综合激情啪啪综合| 成人av电影免费观看| 国产亚洲精品资源在线26u| 日本精品一区二区三区四区的功能| av中文一区| 激情av综合网| 亚洲成av人**亚洲成av**| 视频免费观看| 亚洲免费中文| 国产免费黄视频在线观看| 试看120秒一区二区三区| 99re视频这里只有精品| 韩国av电影免费观看| 中文字幕在线直播| 久久综合给合| 在线看片不卡| 老司机精品视频网站| 成人毛片在线观看| 亚洲黄网站在线观看| 免费网站www在线观看| 欧美日韩精品免费| 精品国产伦一区二区三区免费| 97高清视频| 粉嫩的18在线观看极品精品| 国产视频911| 亚洲高清在线精品| 天天草天天干| 日韩国产网站| 国产精品一区二区视频| 日韩欧美自拍| 首页国产欧美久久| 色欧美日韩亚洲| 亚洲欧洲日本韩国| 激情欧美丁香| 午夜丝袜av电影| 成人听书哪个软件好| 黄色在线观看视频网站| 九九国产精品视频| 91一区二区三区在线| 国产黑丝在线一区二区三区| 欧美日韩久久一区二区| 成人女同在线观看| 日本精品三区| 最新国产成人在线观看| 91精品欧美福利在线观看| 色猫猫成人app| 性欧美69xoxoxoxo| 91丨九色丨黑人外教| 午夜在线成人av| 日韩大片在线永久免费观看网站| 国产精品每日更新| 国产www视频在线观看| 日本一区二区高清不卡| 亚洲精品一区三区三区在线观看| 国产大片一区二区| 精品久久久久久无| 亚洲社区在线| 一区免费视频| 欧美一区二区三区四区高清| 国产一区二区三区免费在线| 亚洲欧美日韩成人高清在线一区| 视频欧美精品| 最色在线观看| 成人免费在线播放视频| 粉嫩一区二区三区四区公司1| 中文字幕一区二区三| 激情亚洲影院在线观看| 激情丁香综合五月| 黄色在线观看视频网站| 国产精品美女久久久| 成人免费在线观看网站| 欧洲激情综合| 宅男深夜免费观看视频| 欧美二区视频| 亚洲香肠在线观看| 在线三级中文| 老司机亚洲精品| 欧美日韩亚洲另类| 日韩av午夜在线观看| 黄色污污视频在线观看| 99精品国产91久久久久久| 欧美猛烈性xbxbxbxb| 国产精品白丝jk白祙喷水网站| 成全电影播放在线观看国语| 青娱乐精品在线视频| 国产精品国产a级| 免费h视频在线观看| 国产精品初高中害羞小美女文| 直接在线观看的三级网址| 色综合久久中文字幕综合网| 国产精品伊人色| 风间由美一区二区av101| 国产www视频在线观看| 在线免费观看h| 色网站国产精品| 国产成人亚洲精品青草天美| 国产成人精品一区二区三区免费| 精品美女永久免费视频| 精品人人视频| 黑人巨大精品欧美一区免费视频| 欧洲精品一区| 能在线观看av网站| 福利91精品一区二区三区| 日韩欧美看国产| 北岛玲一区二区三区四区| 天天在线视频色| 欧美午夜片在线免费观看| 香蕉人人精品| 成人影院av| 亚洲按摩av| 欧美日本在线看| 国产综合自拍| 忘忧草在线影院两性视频| 欧美日韩精品电影| 葵司免费一区二区三区四区五区| 日韩一区二区免费电影| 国产黄色精品视频| 欧美激情成人在线| 在线播放毛片| heyzo在线观看| 欧美一二三区精品| 欧美成人精品1314www| 精品福利在线导航| 欧美日韩国产乱码电影| 中文字幕精品—区二区四季| 成人av网站免费观看| 亚洲美女一区| 国产精品白丝av嫩草影院| 激情小说 在线视频| 国产乱xxⅹxx国语对白| 91啪亚洲精品| 国产欧美不卡| 免费看成人人体视频| 69成人在线| 青青草手机在线| 一级日本不卡的影视| 91tv精品福利国产在线观看| 永久免费av片在线观看全网站| 亚洲精品国产a久久久久久| 中文字幕电影一区| 日本中文字幕不卡| 精品免费在线| h片精品在线观看| 欧美卡1卡2卡| 欧美喷潮久久久xxxxx| 国产精品麻豆久久久| 国产精品精品国产一区二区| 最新中文字幕在线观看| 欧美日韩一区二区三区四区| 亚洲成a人片综合在线| 中文字幕在线不卡视频| 欧美一区在线看| **爰片久久毛片| 不卡av免费观看| 日韩精品视频无播放器在线看 |