亚洲十八**毛片_亚洲综合影院_五月天精品一区二区三区_久久久噜噜噜久久中文字幕色伊伊 _欧美岛国在线观看_久久国产精品毛片_欧美va在线观看_成人黄网大全在线观看_日韩精品一区二区三区中文_亚洲一二三四区不卡

CISC3025代寫、代做c++,Java程序設計

時間:2024-04-03  來源:  作者: 我要糾錯



University of Macau
CISC3025 - Natural Language Processing
Project#3, 2023/2024
(Due date: 18th April)
Person Name ('Named Entity') Recognition
This is a group project with two students at most. You need to enroll in a group here. In this project,
you will be building a maximum entropy model (MEM) for identifying person names in newswire
texts (Label=PERSON or Label=O). We have provided all of the machinery for training and testing
your MEM, but we have left the feature set woefully inadequate. Your job is to modify the code
for generating features so that it produces a much more sensible, complete, and higher-performing
set of features.
NOTE: In this project, we expect you to design a web application for demonstrating your final
model. You need to design a web page that provides at least such a simple function: 1) User inputs
sentence; 2) Output the named entity recognition results. Of course, more functionalities in your
web application are highly encouraged. For example, you can integrate the previous project’s work,
i.e., text classification, into your project (It would be very cool!).
You NEED to submit:
• Runnable program
o You need to implement a Named Entity Recognition model based on the given starter
codes
• Model file
o Once you have finished the designing of your features and made it functions well, it
will dump a model file (‘model.pkl’) automatically. We will use it to evaluate
your model.
• Web application
o You also need to develop a web application (freestyle, no restriction on programming
languages) to demonstrate your NER model or even more NLP functions.
o Obviously, you need to learn how to call your python project when building the web
application.
• Report
o You should finish a report to introduce your work on this project. Your report should
contain the following content:
§ Introduction;
§ Description of the methods, implementation, and additional consideration to
optimize your model;
§ Evaluations and discussions about your findings;
2
§ Conclusion and future work suggestions.
• Presentation
o You need to give a 8-minute presentation in the class to introduce your work followed
by a 3-minute Q&A section. The content of the presentation may refer to the report.
Starter Code
In the starter code, we have provided you with three simple starter features, but you should be able
to improve substantially on them. We recommend experimenting with orthographic information,
gazetteers, and the surrounding words, and we also encourage you to think beyond these
suggestions.
The file you will be modifying is MEM.py
Adding Features to the Code
You will create the features for the word at the given position, with the given previous label. You
may condition on any word in the sequence (and its relative position), not just the current word
because they are all observed. You may not condition on any labels other than the previous one.
You need to give a unique name for each feature. The system will use this unique name in training
to set the weight for that feature. At the testing time, the system will use the name of this feature
and its weight to make a classification decision.
Types of features to include
Your features should not just be the words themselves. The features can represent any property of
the word, context, or additional knowledge.
For example, the case of a word is a good predictor for a person's name, so you might want to add
a feature to capture whether a given word was lowercase, Titlecase, CamelCase, ALLCAP, etc.
def features(self, words, previous_label, position):
 features = {}
 """ Baseline Features """
 current_word = words[position]
 features['has_(%s)' % current_word] = 1
 features['prev_label'] = previous_label
 if current_word[0].isupper():
 features['Titlecase'] = 1
 #===== TODO: Add your features here =======#
 #...
 #=============== TODO: Done ================#
 return features
3
Imagine you saw the word “Jenny”. In addition to the feature for the word itself (as above), you
could add a feature to indicate it was in Title case, like:
You might encounter an unknown word in the test set, but if you know it begins with a capital letter
then this might be evidence that helps with the correct prediction.
Choosing the correct features is an important part of natural language processing. It is as much art
as science: some trial and error is inevitable, but you should see your accuracy increasing as you
add new types of features.
The name of a feature is not different from an ID number. You can use assign any name for a
feature as long as it is unique. For example, you can use “case=Title” instead of “Titlecase”.
Running the Program
We have provided you with a training set and a development set. We will be running your programs
on an unseen test set, so you should try to make your features as general as possible. Your goal
should be to increase F1 on the dev set, which is the harmonic mean of the precision and the recall.
You can use three different command flags (‘-t’, ‘-d’, ‘-s’) to train, test, and show respectively.
These flags can be used independently or jointly. If you run the program as it is, you should see the
following training process:
Afterward, it can print out your score on the dev set.
You can also give it an additional flag, -s, and have it show verbose sample results. The first column
is the word, the last two columns are your program's prediction of the word’s probability to be
$ python run.py -d
Testing classifier...
f_score = 0.8715
accuracy = 0.9641
recall = 0.7143
precision = 0.9642
if current_word[0].isupper():
features['Titlecase'] = 1
$ cd NER
$ python run.py -t
Training classifier...
 ==> Training (5 iterations)
 Iteration Log-Likelihood Accuracy
 ---------------------------------------
 1 -0.69315 0.055
 2 -0.09383 0.946
 3 -0.08134 0.968
 4 -0.07136 0.969
 Final -0.06330 0.969
4
PERSON or O. The star ‘*’ indicates the gold result. This should help you do error analysis and
properly target your features.
Where to make your changes?
1. Function ‘features()’ in MEM.py
2. You can modify the “Customization” part in run.py in order to debug more efficiently and
properly. It should be noted that your final submitted model should be trained under at least 20
iterations.
3. You may need to add a function “predict_sentence( )” in class MEM( ) to output predictions
and integrate with your web applications.
Changes beyond these, if you choose to make any, should be done with caution.
Grading
The assignment will be graded based on your codes, reports, and most importantly final
presentation.
$ python run.py -s
 Words P(PERSON) P(O)
----------------------------------------
 EU 0.0544 *0.9456
 rejects 0.0286 *0.9714
 German 0.0544 *0.9456
 call 0.0286 *0.9714
 to 0.0284 *0.9716
 boycott 0.0286 *0.9714
 British 0.0544 *0.9456
 lamb 0.0286 *0.9714
 . 0.0281 *0.9719
 Peter *0.4059 0.5941
 Blackburn *0.5057 0.4943
 BRUSSELS 0.4977 *0.5023
 1996-08-22 0.0286 *0.9714
 The 0.0544 *0.9456
 European 0.0544 *0.9456
 Commission 0.0544 *0.9456
 said 0.0258 *0.9742
 on 0.0283 *0.9717
 Thursday 0.0544 *0.9456
 it 0.0286 *0.9714
#====== Customization ======
BETA = 0.5
MAX_ITER = 5 # max training iteration
BOUND = (0, 20) # the desired position bound of samples
#==========================
5
Tips
• Start early! This project may take longer than the previous assignments if you are aiming for
the perfect score.
• Generalize your features. For example, if you're adding the above "case=Title" feature, think
about whether there is any pattern that is not captured by the feature. Would the "case=Title"
feature capture "O'Gorman"?
• When you add a new feature, think about whether it would have a positive or negative weight
for PERSON and O tags (these are the only tags for this assignment).

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp






















 

標簽:

掃一掃在手機打開當前頁
  • 上一篇:COMP3334代做、代寫Python程序語言
  • 下一篇:代寫CSC 330、代做C/C++編程語言
  • 無相關信息
    昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級風景名勝區
    昆明西山國家級風景名勝區
    昆明旅游索道攻略
    昆明旅游索道攻略
  • 短信驗證碼平臺 理財 WPS下載

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    欧美高清视频看片在线观看| 精品精品国产高清一毛片一天堂| 亚洲最大成人网4388xx| 偷窥少妇高潮呻吟av久久免费| 亚洲成a天堂v人片| 欧美日韩国产在线观看| 国产乱xxⅹxx国语对白| 亚洲一区在线日韩在线深爱| 麻豆av在线导航| 裤袜国产欧美精品一区| 日韩高清一区| 9999国产精品| 国产精品毛片一区二区三区| 免费一级欧美片在线观看| 成人一区二区三区在线观看| 1000精品久久久久久久久| 色先锋资源久久综合| 精品成人佐山爱一区二区| 在线观看国产福利视频| 牛牛精品视频在线| 精品视频在线观看网站| 在线精品小视频| 国精产品一区一区三区mba桃花| 久久久国产午夜精品| 精品成人久久av| av高清日电影| 日韩精品亚洲人成在线观看| 9999精品视频| 欧美天天在线| 99久久久精品免费观看国产蜜| 一区二区三区美女| 人善交video高清| av在线下载| 久久悠悠精品综合网| 在线不卡视频| 久久精品日韩一区二区三区| 欧美日韩亚洲综合一区| 国产香蕉视频在线看| 国产精品.xx视频.xxtv| 欧美aa国产视频| 成人动漫av在线| 日本道色综合久久| 免费a在线观看| 国产欧美视频在线| 国产日韩欧美一区| 国产精品久久久久一区二区三区共| 日本乱码高清不卡字幕| 日本成人一区二区三区| 欧洲美女精品免费观看视频| 伊人久久成人| 亚洲欧美日韩国产综合| www.99色.com| 在线视频cao| 黄色免费成人| 亚洲欧美日韩国产综合| 另类av导航| 97久久精品一区二区三区的观看方式| 在线综合视频| 亚洲国产精品久久久久婷婷884 | 日韩成人影视| 国产三级精品三级在线观看国产| 水蜜桃久久夜色精品一区的特点 | 国产欧美三级| 亚洲一区在线观看免费观看电影高清| 欧美艹逼视频| 成人盗摄视频| 国产成人免费视频网站| 欧美军同video69gay| www.youjizz.com在线| 国产精品99免费看| 亚洲国产欧美另类丝袜| jyzzz在线观看视频| av中字幕久久| 国产精品久久久久桃色tv| 亚洲国产资源| 精品国产一区探花在线观看| 久久久91精品国产一区二区三区| 日日躁夜夜躁人人揉av五月天| 国产激情精品一区二区三区| 国产精品影视在线| 天天射夜夜爽| 亚洲专区**| 久久色成人在线| jk破处视频在线| 欧美网色网址| 国产精品久久久久久福利一牛影视 | 国产精品欧美极品| 日韩一二三四| 午夜精品久久久久久久四虎美女版| 亚洲乱码国产乱码精品精可以看| 成人精品一区二区三区校园激情| 亚洲精品国产首次亮相| 午夜av电影一区| 爱看av在线| 蜜桃av一区二区三区| 精品国产免费一区二区三区香蕉| 亚洲视频国产| 国产精品人妖ts系列视频| av每日在线更新| 99国产精品久久久久久久| 欧美日韩二区三区| 免费观看亚洲视频大全| 久久久久久久久蜜桃| 第一福利在线| 午夜亚洲性色福利视频| 日韩欧美一级二级三级| 任你躁在线精品免费| 一区二区三区日韩精品| 中文字幕在线直播| 不卡一区二区中文字幕| 国产剧情在线观看| 免费日韩精品中文字幕视频在线| 精品国内二区三区| 国产影视一区| 欧美性大战久久久久久久 | 在线观看免费观看在线91| 欧美日韩国产在线一区| 日韩欧美国产午夜精品| 精品日产免费二区日产免费二区| 成视频年人免费看黄网站| 欧美激情成人动漫| 国产制服丝袜一区| 精品视频一二区| 天堂av在线一区| 又黄又爽在线观看| 亚洲一区日韩| 在线观看国产视频一二三| 欧美fxxxxxx另类| 日韩免费视频一区二区| 色婷婷综合网| 欧美一级电影网站| 日韩精品一区二区久久| 91精品午夜视频| 首页国产精品| 天天色天天色| 亚洲国产高清一区二区三区| 国产美女av| 一本久久综合| 在线看的网站你懂| 麻豆精品蜜桃视频网站| yjizz视频网站在线播放| 国产精品系列在线观看| 在线观看h片| 99re免费视频精品全部| 91九色美女在线视频| 国产精品欧美久久久久一区二区| 精品免费av在线| 一区二区国产视频| 久久国产精品免费精品3p| 精品污污网站免费看| 欧美日韩中文一区二区| 99免费视频| 日韩成人精品在线| 天天影视久久综合| 久久久www免费人成精品| 欧美最新精品| 无吗不卡中文字幕| 日韩国产专区| 情趣网站在线观看| 国产精品资源在线| 户外露出一区二区三区| 精品日本美女福利在线观看| 亚洲春色h网| 1069男同网址| 精品无码三级在线观看视频| 国产乱码午夜在线视频| 午夜免费久久看| 日韩欧美精品综合| 亚洲一区在线日韩在线深爱| 国产不卡在线一区| 三上悠亚国产精品一区二区三区| 福利一区福利二区微拍刺激| 亚洲情侣在线| 毛片免费在线播放| 国产清纯美女被跳蛋高潮一区二区久久w | 亚洲香肠在线观看| 欧美调教femdomvk| 亚洲精品免费一二三区| 噜噜噜91成人网| 岛国精品一区| 91精品论坛| 精品国产一区二区在线观看| 国产成人免费av在线| 要久久电视剧全集免费| 成人欧美大片| 高清成人在线| 国产三级精品三级在线观看国产| 国产精品成人国产| 一区二区三区视频国产日韩| 欧美视频日韩视频| 亚洲尤物在线视频观看| 国产午夜精品理论片a级大结局| 日韩天天综合| 国产精品视频一区二区三区综合 | 国产精品13p| 国产麻豆精品| 一道本一区二区| 国产三级一区二区| 欧美tk—视频vk| 成人勉费视频|