亚洲十八**毛片_亚洲综合影院_五月天精品一区二区三区_久久久噜噜噜久久中文字幕色伊伊 _欧美岛国在线观看_久久国产精品毛片_欧美va在线观看_成人黄网大全在线观看_日韩精品一区二区三区中文_亚洲一二三四区不卡

代做Lab 2: Time Series Prediction with GP

時間:2024-03-21  來源:  作者: 我要糾錯



Evolutionary Computation 2023/2024
Lab 2: Time Series Prediction with GP
Released: February 26, 2024
Deadline: March 18, 2024
Weight: 25 %
You need to implement one program that solves Exercises 1-3 using any programming language.
In Exercise 5, you will run a set of experiments and describe the result using plots and a short
discussion.
(In the following, replace abc123 with your username.) You need to submit one zip file
with the name ec2024-lab2-abc123.zip. The zip file should contain one directory named
ec2024-lab2-abc123 containing the following files:
• the source code for your program
• a Dockerfile (see the appendix for instructions)
• a PDF file for Exercises 4 and 5
In this lab, we will do a simple form of time series prediction. We assume that we are given some
historical data, (e.g. bitcoin prices for each day over a year), and need to predict the next value in
the time series (e.g., tomorrow’s bitcoin value).
1
We formulate the problem as a regression problem. The training data consists of a set of m
input vectors X = (x
(0), . . . , x(m−1)) representing historical data, and a set of m output values
Y = (x
(0), . . . , x(m−1)), where for each 0 ≤ j ≤ m − 1, x
(j) ∈ R
n and y
(j) ∈ R. We will use genetic
programming to evolve a prediction model f : R
n → R, such that f(x
(j)
) ≈ y
(j)
.
Candidate solutions, i.e. programs, will be represented as expressions, where each expression evaluates to a value, which is considered the output of the program. When evaluating an expression,
we assume that we are given a current input vector x = (x0, . . . , xn−1) ∈ R
n. Expressions and evaluations are defined recursively. Any floating number is an expression which evaluates to the value
of the number. If e1, e2, e3, and e4 are expressions which evaluate to v1, v2, v3 and v4 respectively,
then the following are also expressions
• (add e1 e2) is addition which evaluates to v1 + v2, e.g. (add 1 2)≡ 3
• (sub e1 e2) is subtraction which evaluates to v1 − v2, e.g. (sub 2 1)≡ 1
• (mul e1 e2) is multiplication which evaluates to v1v2, e.g. (mul 2 1)≡ 2
• (div e1 e2) is division which evaluates to v1/v2 if v2 ̸= 0 and 0 otherwise, e.g., (div 4 2)≡ 2,
and (div 4 0)≡ 0,
• (pow e1 e2) is power which evaluates to v
v2
1
, e.g., (pow 2 3)≡ 8
• (sqrt e1) is the square root which evaluates to √
v1, e.g.(sqrt 4)≡ 2
• (log e1) is the logarithm base 2 which evaluates to log(v1), e.g. (log 8)≡ 3
• (exp e1) is the exponential function which evaluates to e
v1
, e.g. (exp 2)≡ e
2 ≈ 7.39
• (max e1 e2) is the maximum which evaluates to max(v1, v2), e.g., (max 1 2)≡ 2
• (ifleq e1 e2 e3 e4) is a branching statement which evaluates to v3 if v1 ≤ v2, otherwise the
expression evaluates to v4 e.g. (ifleq 1 2 3 4)≡ 3 and (ifleq 2 1 3 4)≡ 4
• (data e1) is the j-th element xj of the input, where j ≡ |⌊v1⌋| mod n.
• (diff e1 e2) is the difference xk − xℓ where k ≡ |⌊v1⌋| mod n and ℓ ≡ |⌊v2⌋| mod n
• (avg e1 e2) is the average 1
|k−ℓ|
Pmax(k,ℓ)−1
t=min(k,ℓ)
xt where k ≡ |⌊v1⌋| mod n and ℓ ≡ |⌊v2⌋|
mod n
In all cases where the mathematical value of an expression is undefined or not a real number (e.g.,

−1, 1/0 or (avg 1 1)), the expression should evaluate to 0.
We can build large expressions from the recursive definitions. For example, the expression
(add (mul 2 3) (log 4))
evaluates to
2 · 3 + log(4) = 6 + 2 = 8.
2
To evaluate the fitness of an expression e on a training data (X , Y) of size m, we use the mean
square error
f(e) = 1
m
mX−1
j=0

y
(j) − e(x
(j)
)
2
,
where e(x
(j)
) is the value of the expression e when evaluated on the input vector x
(j)
.
3
Exercise 1. (30 % of the marks)
Implement a routine to parse and evaluate expressions. You can assume that the input describes a
syntactically correct expression. Hint: Make use of a library for parsing s-expressions1
, and ensure
that you evaluate expressions exactly as specified on page 2.
Input arguments:
• -expr an expression
• -n the dimension of the input vector n
• -x the input vector
• -question the question number (always 1 in this case)
Output:
• the value of the expression
Example: In this example, we assume that your program has been compiled to an executable with
the name my lab solution.
[pkl@phi ocamlec]$ my_lab_solution -question 1 -n 1 -x "1.0"
-expr "(mul (add 1 2) (log 8))"
9.0
[pkl@phi ocamlec]$ my_lab_solution -question 1 -n 2 -x "1.0 2.0"
-expr "(max (data 0) (data 1))"
2.0
Exercise 2. (10 % of the marks) Implement a routine which computes the fitness of an expression
given a training data set.
Input arguments:
• -expr an expression
• -n the dimension of the input vector
• -m the size of the training data (X , Y)
• -data the name of a file containing the training data in the form of m lines, where each line
contains n + 1 values separated by tab characters. The first n elements in a line represents
an input vector x, and the last element in a line represents the output value y.
• -question the question number (always 2 in this case)
1See e.g. implementations here http://rosettacode.org/wiki/S-Expressions
4
Output:
• The fitness of the expression, given the data.
Exercise 3. (30 % of the marks)
Design a genetic programming algorithm to do time series forecasting. You can use any genetic
operators and selection mechanism you find suitable.
Input arguments:
• -lambda population size
• -n the dimension of the input vector
• -m the size of the training data (X , Y)
• -data the name of a file containing training data in the form of m lines, where each line
contains n + 1 values separated by tab characters. The first n elements in a line represents
an input vector x, and the last element in a line represents the output value y.
• -time budget the number of seconds to run the algorithm
• -question the question number (always 3 in this case)
Output:
• The fittest expression found within the time budget.
Exercise 4. (10 % of the marks) Here, you should do one of the following exercises.
If you follow LH Evolutionary Computation, do the following exercise: Describe your
algorithm from Exercise 3 in the form of pseudo-code. The pseudo-code should be sufficiently detailed
to allow an exact re-implementation.
If you follow LM Evolutionary Computation (extended), do the following exercise:
Describe in 150 words or less the result in one recent research paper on the topic “symbolic regression
using genetic programming”. The paper needs to be published in 2020 or later in the proceedings of
one of the following conferences: GECCO, PPSN, CEC, or FOGA.
5
Exercise 5. (20 % of the marks)
In this final task, you should try to determine parameter settings for your algorithm which lead to
as fit expressions as possible.
Your algorithm is likely to have several parameters, such as the population size, mutation rates,
selection mechanism, and other mechanisms components, such as diversity mechanisms.
Choose parameters which you think are essential for the behaviour of your algorithm. Run a set of
experiments to determine the impact of these parameters on the solution quality. For each parameter
setting, run 100 repetitions, and plot box plots of the fittest solution found within the time budget.
6
A. Docker Howto
Follow these steps exactly to build, test, save, and submit your Docker image. Please replace abc123
in the text below with your username.
1. Install Docker CE on your machine from the following website:
https://www.docker.com/community-edition
2. Copy the PDF file from Exercises 4 and 5 all required source files, and/or bytecode to an
empty directory named ec2024-lab2-abc123 (where you replace abc123 with your username).
mkdir ec2024 - lab2 - abc123
cd ec2024 - lab2 - abc123 /
cp ../ exercise . pdf .
cp ../ abc123 . py .
3. Create a text file Dockerfile file in the same directory, following the instructions below.
# Do not change the following line . It specifies the base image which
# will be downloaded when you build your image .
FROM pklehre / ec2024 - lab2
# Add all the files you need for your submission into the Docker image ,
# e . g . source code , Java bytecode , etc . In this example , we assume your
# program is the Python code in the file abc123 . py . For simplicity , we
# copy the file to the / bin directory in the Docker image . You can add
# multiple files if needed .
ADD abc123 . py / bin
# Install all the software required to run your code . The Docker image
# is derived from the Debian Linux distribution . You therefore need to
# use the apt - get package manager to install software . You can install
# e . g . java , python , ghc or whatever you need . You can also
# compile your code if needed .
# Note that Java and Python are already installed in the base image .
# RUN apt - get update
# RUN apt - get -y install python - numpy
# The final line specifies your username and how to start your program .
# Replace abc123 with your real username and python / bin / abc123 . py
# with what is required to start your program .
CMD [" - username " , " abc123 " , " - submission " , " python / bin / abc123 . py "]
7
4. Build the Docker image as shown below. The base image pklehre/ec2024-lab2 will be
downloaded from Docker Hub
docker build . -t ec2024 - lab2 - abc123
5. Run the docker image to test that your program starts. A battery of test cases will be executed
to check your solution.
docker run ec2024 - lab2 - abc123
6. Once you are happy with your solution, compress the directory containing the Dockerfile as
a zip-file. The directory should contain the source code, the Dockerfile, and the PDF file
for Exercise 4 and 5. The name of the zip-file should be ec2024-lab2-abc123.zip (again,
replace the abc123 with your username).
Following the example above, the directory structure contained in the zip file should be as
follows:
ec2024-lab2-abc123/exercise.pdf
ec2024-lab2-abc123/abc123.py
ec2024-lab2-abc123/Dockerfile
Submissions which do not adhere to this directory structure will be rejected!
7. Submit the zip file ec2024-lab2-abc123.zip on Canvas.
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

標簽:

掃一掃在手機打開當前頁
  • 上一篇:代寫CSIE3310、代做c++/Python編程
  • 下一篇:AIST1110代做、Python編程設計代寫
  • 無相關信息
    昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級風景名勝區
    昆明西山國家級風景名勝區
    昆明旅游索道攻略
    昆明旅游索道攻略
  • 短信驗證碼平臺 理財 WPS下載

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    999国产精品| 欧美无砖专区一中文字| 国产午夜亚洲精品理论片色戒 | 777丰满影院| 91精品国产综合久久福利软件| 欧美美女一区二区三区| 精品国产麻豆免费人成网站| 69国产精品| 日韩欧美电影在线观看| 美女隐私在线观看| 色戒汤唯在线观看| 免费观看性欧美大片无片| 欧美激情极品| 欧美91大片| 日一区二区三区| 成人午夜免费视频| 中文字幕一区二区三区四区不卡| 亚洲一区二区三区不卡国产欧美| 欧美日韩一级黄| 午夜免费性福利| 黄色成人在线观看| 在线国产成人影院| 亚洲亚洲免费| 模特精品在线| 91色.com| 在线一区二区三区四区| 国产黄色一级电影| www在线免费观看视频| 成人影院在线免费观看| 国产成人1区| 日韩精品成人一区二区三区| 久久精品男人天堂av| 在线亚洲免费视频| a天堂中文在线官网| av免费看在线| 51亚洲精品| 性欧美xxxx大乳国产app| 久久综合久久综合九色| 色8久久精品久久久久久蜜| 蜜桃视频免费网站| 国产三级电影在线播放| 欧美日韩xxxx| 国内精品伊人久久久久影院对白| 亚洲欧洲国产日韩| 精品久久久久久久久久久院品网| av基地在线| 国产亚洲字幕| 噜噜噜躁狠狠躁狠狠精品视频| 久久蜜桃香蕉精品一区二区三区| 在线观看日韩电影| 岛国最新视频免费在线观看| 国产色99精品9i| 免费在线亚洲| 亚洲国产日韩一区二区| 婷婷六月天丁香| 中韩乱幕日产无线码一区| 亚洲九九在线| 国产精品午夜久久| xx免费视频| 成人全视频在线观看在线播放高清 | 国产精品视频免费看| 日韩欧美国产wwwww| 欧美1—12sexvideos| 99九九热只有国产精品| 久久美女艺术照精彩视频福利播放| 欧美一区二区三区播放老司机| 蜜芽在线免费观看| 欧美电影一区| 国产精品网曝门| 神马午夜dy888| 亚洲综合色婷婷在线观看| 免费在线看成人av| 色8久久精品久久久久久蜜| 欧美激情办公室videoshd| 国产精品欧美日韩一区| 久久久91精品国产一区二区精品| 奇米四色7777| 亚洲精品一区av| 激情综合色丁香一区二区| 欧美日韩国产首页| 日本不卡1234视频| 久久中文在线| 欧美日韩国产大片| 亚洲十八**毛片| 视频一区在线播放| 91精品久久久久久蜜臀| 成人影院网站| 久久电影国产免费久久电影| 欧美伊人久久久久久久久影院| av影院在线免费观看| 国产精品毛片在线| 欧美三级韩国三级日本三斤| 在线高清av| 韩国一区二区三区| 精品国产一二三| 欧美黄色一级| 国产清纯白嫩初高生在线观看91| 亚洲国产精品成人一区二区在线| 欧美日韩激情| 天天影视色香欲综合网老头| 视频在线观看入口黄最新永久免费国产 | 成人高清网站| 精品91在线| 7777女厕盗摄久久久| 欧美男男gaygay1069| 成人性视频网站| 中文字幕在线看| 亚洲最新av| 欧美三级视频在线观看| 日韩av懂色| 欧美国产一区视频在线观看| 在线激情小视频| 久久aⅴ乱码一区二区三区| 欧美老肥妇做.爰bbww| av在线播放一区二区| 99久久国产综合色|国产精品| 污视频在线看操| 亚洲精品资源| 天天操天天插| 成人aaaa| 日本乱人伦aⅴ精品| 综合视频一区| 亚洲成人av电影在线| 日本少妇一区| 国产女同互慰高潮91漫画| 国产剧情在线| 久久国产三级精品| 日韩精品视频在线观看一区二区三区| 欧美久久影院| 亚州福利视频| 午夜精品久久久久99热蜜桃导演 | 91精品国产乱码久久蜜臀| 国产精品高潮呻吟久久久久 | brazzers在线观看| 成人性生交大片| 黄色av电影在线播放| 国产成人欧美日韩在线电影| 国产一二三在线观看| 免费高清在线一区| 精品成人一区二区三区免费视频| 老司机精品视频网站| 亚洲人av在线| 六月丁香婷婷久久| 成人免费一区二区三区视频网站| 激情综合色综合久久| 老司机av在线免费看| eeuss国产一区二区三区| 黄色网址在线免费| 久久影院午夜片一区| av高清不卡| 亚洲成人www| 色88888久久久久久影院| 欧美二区三区的天堂| 国产精品久久观看| 免费看av大片| 激情综合网激情| av电影院在线看| 日韩理论片在线| 精品资源在线| 欧美videos大乳护士334| 国产一区二区中文| 欧美日韩在线中文字幕| 成人性色生活片| 伊人久久在线| 欧美视频不卡中文| 91欧美大片| 日本成人一区| 99久久99久久精品免费观看| 欧洲亚洲两性| 日本韩国欧美一区二区三区| 中文字幕一区二区三三| 尤物免费看在线视频| 国产宾馆实践打屁股91| 亚洲成人激情社区| 91精品福利视频| 一区二区亚洲| 麻豆tv入口在线看| 一区二区三区欧美日| 国产一区二区三区四区五区 | 91精品蜜臀一区二区三区在线| 最新日本视频| 26uuu国产在线精品一区二区| 亚洲最大的免费视频网站| 欧美一区二区三区视频免费 | 欧美三级欧美成人高清www| 午夜影院欧美| 日韩av中文| 亚洲高清免费视频| 欧美日韩国产综合网| av毛片在线| 在线观看日韩毛片| 美腿丝袜一区二区三区| 日本精品在线一区| 91精品久久久久久久99蜜桃 | 成年永久一区二区三区免费视频| 91精品福利在线一区二区三区 | 欧美白人最猛性xxxxx69交| 麻豆一区二区在线| 亚洲欧美专区| 中文字幕在线看|