亚洲十八**毛片_亚洲综合影院_五月天精品一区二区三区_久久久噜噜噜久久中文字幕色伊伊 _欧美岛国在线观看_久久国产精品毛片_欧美va在线观看_成人黄网大全在线观看_日韩精品一区二区三区中文_亚洲一二三四区不卡

COMP 315 代做、代寫 java 語言編程

時間:2024-03-10  來源:  作者: 我要糾錯



1 Introduction
Assignment 1: Javascript
COMP 315: Cloud Computing for E-Commerce March 5, 2024
A common task in cloud computing is data cleaning, which is the process of taking an initial data set that may contain erroneous or incomplete data, and removing or fixing those elements before formatting the data in a suitable manner. In this assignment, you will be tested on your knowledge of JavaScript by implementing a set of functions that perform data cleaning operations on a dataset.
2 Ob jectives
By the end of this assignment, you will:
• Gain proficiency in using JavaScript for data manipulation.
• Be able to implement various data cleaning procedures, and understand the significance of them. • Have developed problem-solving skills through practical application.
3 Problem description
For this task, you have been provided with a raw dataset of user information. You must carry out the following series of operations:
• Set up a Javascript class in the manner described in Section 4.
• Convert the data into the appropriate format, as highlighted in Section 5
• Fix erroneous values where possible e.g. age being a typed value instead of a number, age being a real number instead of an integer, etc; as specified in Section 6.
• Produce functions that carry out the queries specified in Section 7.
 Data name Title
First name
Middle name Surname Date of birth Age
Email
Note
This value may be either: Mr, Mrs, Miss, Ms, Dr, or left blank.
Each individual must have one. The first character is capitalised and the rest are lower case, with the exception of the first character after a hyphen.
This may be left blank.
Each individual must have one.
This must be in the format of DD/MM/YYYY.
All data were collected on 26/02/2024, and the age values should reflect this.
The format should be [first name].[surname]@example.com. If two individuals have the same address then an ID is added to differentiate them eg john.smith1, john.smith2, etc
Table 1: The attributes that should be stored for each user
         1

4 Initial setup
Create a Javascript file called Data Processing.js. Create a class within that file called Data Processing. Write a function within that class called load CSV that takes in the filename of a csv file as an input, eg load CSV (”User Details”). The resulting data should be saved locally within the class as a global variable called raw user data. Write a function called format data, which will have no variables are a parameter. The functionality of this method is described in Section 5. Write a function called clean data, which will also have no parameters. The functionality of this method is similarly described in Section 6.
5 Format data
Within the function format data, the data stored within raw user data should be processed and output to a global variable called formatted user data. The data are initially provided in the CSV format, with the delimiter being the ’,’ character. The first column of the data is the title and full name of the user. The second and third columns are the date of birth, and age of the user, respectively. Finally, the fourth column is the email of the user. Ensure that the dataset is converted into the appropriate format, outlined in Table 1. This data should be saved in the JSON format (you may use any built in JavaScript method for this). The key for each of the values should be names shown in the ’Data name’ column, however converted to lower case with an underscore instead of a space character eg ’first name’.
6 Data cleaning
Within the function clean data, the data cleaning tasks should be carried out, loading the data stored in formatted user data. All of this code may be written within the clean data function, or may be handled by a series of functions that are called within this class. The latter option is generally considered better practice. Examine the data in order to determine which values are in the incorrect format or where values may be missing. If a value is in the incorrect format then it must be converted to be in the correct format. If a value is missing or incorrect, then an attempt should be made to fill in that data given the other values. The cleaned data should be saved into the global variable cleaned user data.
7 Queries
Often, once the data has been processed, we perform a series of data analysis tasks on the cleaned data. Each of these queries are outlined in Table 2. Write a function with the name given in the ’Function name’ column, that carries out the query given in the corresponding ’Query description’. The answer should be returned by the function, and not stored locally or globally.
 Function name
most common surname average age
youngest dr
most common month
Query description
What is the most common surname name?
What is the average age of the users, given the values stored in the ’age’ column? This should be a real number to 3 significant figures.
Return all of the information about the youngest individual in the dataset with the title Dr.
What is the most common month for individuals in the data set?
        percentage titles
 What percentage of the dataset has each of the titles? Return this in the form of an array, following the order specified in the ’Title’ row of Table 1. This should included the blank title, and the percentage should be rounded to the nearest integer using bankers rounding.
  percentage altered
 A number of values have been altered between formatted user data and cleaned user data. What percentage of values have been altered? This should be a real number to 3 significant figures.
  Table 2: The queries that should be carried out on the cleaned data
2

8 Marking
The marking will be carried out automatically using the CodeGrade marking platform. A series of unit tests will be ran, and the mark will correspond with how many of those unit tests were successfully executed. Your work will be submitted to an automatic plagiarism/collusion detection system, and those exceeding a threshold will be reported to the Academic Integrity Officer for investigation regarding adhesion to the university’s policy https://www.liverpool.ac.uk/media/livacuk/tqsd/code-of-practice-on-assessment/appendix L cop assess.pdf.
9 Deadline
The deadline is 23:59 GMT Friday the 22nd of March 2024. Late submissions will have the typical 5% penalty applied for each day late, up to 5 days. Submissions after this time will not be marked. https: //www.liverpool.ac.uk/aqsd/academic-codes-of-practice/code-of-practice-on-assessment/
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

標簽:

掃一掃在手機打開當前頁
  • 上一篇:代寫 CSSE7030 Connect 4
  • 下一篇:代做ACS61012、代寫ACS61012 Machine Vision
  • 無相關信息
    昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級風景名勝區
    昆明西山國家級風景名勝區
    昆明旅游索道攻略
    昆明旅游索道攻略
  • 短信驗證碼平臺 理財 WPS下載

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    欧美日韩午夜剧场| 成人ar影院免费观看视频| 国产一区二区精品| 亚洲一区激情| 久久99蜜桃精品| 成人国产电影网| 91免费版在线看| 最新不卡av在线| 亚洲成人免费av| 欧美三日本三级三级在线播放| 欧美性猛交一区二区三区精品| 欧美伦理视频网站| www.天天操| 二个人看的毛片| 国产色在线 com| h片视频在线观看| 成人国产精品入口免费视频| 日韩欧美激情电影| 全球成人免费直播| 国产情侣一区| hitomi一区二区三区精品| 国产精品丝袜一区| 日韩欧美精品免费在线| 精品国精品自拍自在线| 亚洲52av| 一级毛片久久久| 久久综合五月婷婷| 亚洲免费成人| 91免费国产在线| 欧美日韩国产丝袜另类| 成人网18免费网站在线| 三级黄视频在线观看| 四虎av在线| 99国产精品久久一区二区三区| 综合av在线| 国产成人精品亚洲午夜麻豆| 亚洲黄网站在线观看| 欧美性色黄大片| 香蕉97视频观看在线观看| 国产美女高潮在线| 免费看av成人| 精品一区二区三区久久久| 中文字幕乱码日本亚洲一区二区| 在线免费视频一区二区| 最色在线观看| 日韩在线影院| 天天综合一区| 91热门视频在线观看| 欧美在线你懂得| 日韩三级电影网| 国产精品久久乐| 狠狠入ady亚洲精品| 成人av免费在线观看| 午夜精品一区二区三区免费视频 | 99久久久久国产精品| 精品一区二区三区免费视频| 亚洲va天堂va国产va久| 三级ai视频| 免费在线观看一区| 99热精品在线| 夜夜嗨av一区二区三区中文字幕| 美女做a视频| 99久久久国产精品免费调教网站| 欧美精品九九| 专区另类欧美日韩| 导航福利在线| 久久99成人| 奇米精品一区二区三区在线观看 | 精品久久一区二区| 女人黄色免费在线观看| 成人中文在线| 久久久久久一二三区| 亚洲jizzjizz妇女| 高清亚洲高清| 免费成人在线视频观看| 日本高清免费不卡视频| 二区在线播放| 亚洲电影影音先锋| 最新国产の精品合集bt伙计| 日韩av资源| 女优一区二区三区| 国产欧美一区二区精品久导航| 成人av视屏| 国产精久久久| 成人av在线一区二区三区| 日韩一级片网址| 日本一道高清亚洲日美韩| 亚洲三级毛片| 在线观看免费成人| av剧情在线观看| 丝袜诱惑亚洲看片| 欧美一区二区三区精品| 欧美理论影院| 久久精品国产精品亚洲综合| 欧美一区二区二区| 成人免费91| 成年人国产精品| 最新日本视频| 精品国产精品| 亚洲精品日韩一| 亚洲资源一区| 丝袜亚洲另类欧美| 精品少妇一区二区三区| 午夜免费欧美电影| 中文字幕欧美激情一区| 生活片a∨在线观看| 亚洲小说欧美另类社区| 欧美三级三级三级爽爽爽| 电影一区二区| 91婷婷韩国欧美一区二区| 在线观看免费成人| 国产一区亚洲| 成人h在线观看| 精品女厕一区二区三区| 亚洲高清毛片| 国产美女av在线| 成人激情av网| 日本在线视频网址| 玖玖精品视频| 成年人视频免费在线观看| 日本不卡中文字幕| 日韩在线免费播放| 成人性视频免费网站| 亚洲国产精品成人一区二区在线| 一区中文字幕| 2欧美一区二区三区在线观看视频 337p粉嫩大胆噜噜噜噜噜91av | 欧美性猛交xxxx免费看漫画| 91成人精品在线| 亚洲va欧美va人人爽午夜| 天天躁日日躁狠狠躁欧美| 国产91福利| 久久美女艺术照精彩视频福利播放 | 免费精品一区二区三区在线观看| 久久久久久久久久久妇女| 亚洲天堂资源| 日本成人免费网站| 亚洲欧美激情一区二区| 日韩不卡手机在线v区| 国语自产精品视频在线看抢先版结局| 奇米色一区二区| 精品视频在线一区二区在线| 国产偷国产偷亚洲高清人白洁 | 99精品国产一区二区三区| 天天槽夜夜槽| 亚洲激情女人| 午夜男人视频在线观看| 日本亚洲免费观看| 成人国产精品一区二区免费麻豆| jizzjizzjizz亚洲| 成人激情黄色小说| 视频在线观看免费影院欧美meiju| 欧美一区二区三区人| 精品午夜久久福利影院| 日韩国产91| 国产一区二区女| 成人片在线看| 天天插天天色| 亚洲天堂精品视频| 国产亚洲1区2区3区| 91色乱码一区二区三区| 日韩黄色免费网站| 亚洲高清自拍| 99亚洲伊人久久精品影院红桃| 亚洲四虎影院| 青春草在线视频| 色av一区二区三区| 黄网动漫久久久| 国产东北露脸精品视频| 免费看久久久| 国产美女在线免费观看| 丁香五六月婷婷久久激情| 亚洲综合日本| 美女午夜精品| 免费成人毛片| 四虎成人在线视频| 91免费国产在线| 91tv官网精品成人亚洲| 色是在线视频| 免费看a在线观看| 免费高清完整在线观看| 色视频在线看| 日韩一区二区三区免费观看| 欧美国产乱子伦| 久久99久久99精品免视看婷婷| 国语精品一区| 网友自拍亚洲| 亚洲高清中文字幕| 成人免费视频免费观看| 日本网站在线观看一区二区三区| 亚欧日韩另类中文欧美| 91九色鹿精品国产综合久久香蕉| 亚洲日本免费电影| 欧美a级在线观看| 麻豆蜜桃在线观看| 桃花色综合影院| 欧美放荡的少妇| 亚洲视频网在线直播| 91欧美一区二区| 久久综合丝袜日本网| 99视频在线精品|