亚洲十八**毛片_亚洲综合影院_五月天精品一区二区三区_久久久噜噜噜久久中文字幕色伊伊 _欧美岛国在线观看_久久国产精品毛片_欧美va在线观看_成人黄网大全在线观看_日韩精品一区二区三区中文_亚洲一二三四区不卡

代寫DTS101TC Introduction to Neural Networks Coursework

時間:2024-03-01  來源:  作者: 我要糾錯


Due: Sunday Apr.21th, 2024 @ 17:00

Weight: 100%

Overview

This coursework is the sole assessment for DTS101TC and aims to evaluate your compre-hension of the module. It consists of three sections: 'Short Answer Question', 'Image Classification Programming', and 'Real-world Application Question'. Each question must be answered as per the instructions provided in the assignment paper. The programming task necessitates the use of Python with PyTorch within a Jupyter Notebook environment, with all output cells saved alongside the code.

Learning Outcomes

A.   Develop an understanding of neural networks  –  their architectures, applications  and limitations.

B.   Demonstrate the ability to implement neural networks with a programming language

C.   Demonstrate the  ability to provide critical analysis on real-world problems and design suitable solutions based on neural networks.

Policy

Please save your assignment in a PDF document, and package your code as a ZIP file. If there are any errors in the program, include debugging information. Submit both the answer sheet and the ZIP code file via Learning Mall Core to the appropriate drop box. Electronic submission is the only method accepted; no hard copies will be accepted.

You must download your file and check that it is viewable after submission. Documents may become  corrupted  during  the  uploading  process  (e.g.  due  to  slow  internet  connections). However, students themselves are responsible for submitting a functional and correct file for assessments.

Avoid Plagiarism

.     Do NOT submit work from others.

.     Do NOT share code/work with others.

.     Do NOT copy and paste directly from sources without proper attribution.

.     Do NOT use paid services to complete assignments for you.

Q1. Short Answer Questions [40 marks]

The questions test general knowledge and understanding of central concepts in the course. The answers should be short. Any calculations need to be presented.

1.  (a.)  Explain the concept of linear separability. [2 marks]

(b.)  Consider the following data points from two categories: [3 marks]

X1  : (1, 1)    (2, 2)    (2, 0);

X2  : (0, 0)    (1, 0)    (0, 1).

Are they linearly separable? Make a sketch and explain your answer.

2.  Derive the gradient descent update rule for a target function represented as

od  = w0 + w1 x1 + ... + wnxn

Define the squared error function first, considering a provided set of training examples D, where each training example d ∈ D is associated with the target output td. [5 marks]

3.  (a.)  Draw a carefully labeled diagram of a 3-layer perceptron with 2 input nodes, 3 hidden nodes, 1 output node and bias nodes. [5 marks]

(b.)  Assuming that the activation functions are simple threshold, f(y) = sign(y), write down the input- output functional form of the overall network in terms of the input-to-hidden weights, wab , and the hidden-to-output weights, ˜(w)bc. [5 marks]

(c.)  How many distinct weights need to be trained in this network? [2 marks]

(d.)  Show that it is not possible to train this network with backpropagation. Explain what modification is necessary to allow backpropagation to work. [3 marks]

(e.)  After you modified the activation function, using the chain rule, calculate expressions for the fol- lowing derivatives

(i.) ∂J/∂y / (ii.) ∂J/∂˜(w)bc

where J is the squared error, and t is the target. [5 marks]

4.  (a.)  Sketch a simple recurrent network, with input x, output y, and recurrent state h. Give the update equations for a simple RNN unit in terms of x, y, and h. Assume it usestanh activation. [5 marks]

(b.)  Name one example that can be more naturally modeled with RNNs than with feedforward neural networks?  For a dataset X := (xt ,yt )1(k), show how information is propagated by drawing a feed-

forward neural network that corresponds to the RNN from the figure you sketch for k = 3.  Recall that a feedforward neural network does not contain nodes with a persistent state. [5 marks]

Q2. Image Classification Programming [40 marks]

For this  question,  you  will  build your  own image  dataset  and  implement a neural network  by Pytorch.   The question is split in a number of steps.  Every  step  gives you some marks.  Answer the  questions for  each step and include the screenshot of code  outputs  in your answer sheet.

- Language and Platform Python  (version  3.5  or  above)  with  Pytorch  (newest  version). You  may  use any libraries available on Python platform, such as numpy, scipy, matplotlib, etc.  You need to run the code in the jupyter notebook.

- Code Submission All of your dataset,  code  (Python files and ipynb files) should be  a package in a single ZIP file,  with  a PDF of your IPython  notebook with  output cells. INCLUDE your dataset in the zip file.

1. Dataset Build [10 marks]

Create an image dataset for classification with 120 images ( ‘.jpg’  format), featuring at least two cate- gories. Resize or crop the images to a uniform size of 128 × 128 pixels.  briefly describe the dataset you constructed.

2. Data Loading [10 marks]

Load your dataset, randomly split the set into training set (80 images), validation set (20 images) and test set (20 images).

For the training set, use python commands to display the number of data entries, the number of classes, the number of data entries for each classes, the shape of the image size.  Randomly plot 10 images in the training set with their corresponding labels.

3. Convolutional Network Model Build [5 marks]

//  pytorch .network

class  Network(nn.Module):

def  __init__ (self,  num_classes=?):

super(Network,  self).__init__ ()

self.conv1  =  nn.Conv2d(in_channels=3,  out_channels=5,  kernel_size=3,  padding=1) self.pool  =  nn.MaxPool2d(2,  2)

self.conv2  =  nn.Conv2d(in_channels=5,  out_channels=10,  kernel_size=3,  padding=1) self.fc1  =  nn.Linear(10  *  5  *  5,  100)

self.fc2  =  nn.Linear(100,  num_classes)

def  forward(self,  x):

x  =  self.pool(F.relu(self.conv1(x)))

x  =  self.pool(F.relu(self.conv2(x)))

x  =  x.view(-1,  10  *  5  *  5)

x  =  self.fc1(x)

x  =  self.fc2(x)

return  x

Implement Network, and complete the form below according to the provided Network. Utilize the symbol ‘-’ to represent sections that do not require completion. What is the difference between this model and AlexNet?

Layer

# Filters

Kernel Size

Stride

Padding

Size of

Feature Map

Activation Function

Input

Conv1


ReLU

MaxPool

Conv2


ReLU

FC1


-

-

-


ReLU

FC2


-

-

-

4. Training [10 marks]

Train the above Network at least 50 epochs. Explain what the lost function is, which optimizer do you use, and other training parameters, e.g., learning rate, epoch number etc.  Plot the training history, e.g., produce two graphs (one for training and validation losses, one for training and validation accuracy) that each contains 2 curves. Have the model converged?

5. Test [5 marks]

Test the trained model on the test set.  Show the accuracy and confusion matrix using python commands.

Q3. Real-world Application Questions [20 marks]

Give ONE specific  real-world problem  that  can  be  solved  by  neural networks.   Answer  the  questions  below (answer to  each  question should not  exceed 200 words) .

1.  Detail the issues raised by this real-world problem, and explain how neural networks maybe used to address these issues. [5 marks]

2.  Choose an established neural network to tackle the problem.  Specify the chosen network and indicate the paper in which this model was published. Why you choose it? Explain. [5 marks]

3.  How to collect your training data?  Do you need labeled data to train the network?  If your answer is yes, 請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

標簽:

掃一掃在手機打開當前頁
  • 上一篇:代做代寫COMPSCI 4091 Advanced Networked Systems
  • 下一篇:CSCI 2033代做、代寫Python, C++/Java編程
  • 無相關信息
    昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級風景名勝區
    昆明西山國家級風景名勝區
    昆明旅游索道攻略
    昆明旅游索道攻略
  • 短信驗證碼平臺 理財 WPS下載

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    亚洲精品66| 很黄很黄激情成人| 99在线免费观看| 一本一道久久a久久精品综合蜜臀| 麻豆成人免费电影| 99ri日韩精品视频| 日韩欧美国产黄色| 亚洲h在线观看| 精品美女永久免费视频| 性一爱一乱一交一视频| 自拍在线观看| 99久久久久国产精品| 日韩av成人高清| 国产乱理伦片在线观看夜一区| 欧美/亚洲一区| 成人免费一区| 成人爽a毛片免费啪啪红桃视频| 日本在线观看视频| 91se在线| xxxxxx欧美| 欧美成人hd| 午夜伦欧美伦电影理论片| 久久综合婷婷| 国产精品白丝av嫩草影院| 免费在线视频你懂得| 亚洲成人综合网站| 欧美日韩一区二区三区视频| 欧美日韩精品电影| 黑人巨大精品欧美一区二区三区| 欧美日本国产视频| 黄页网站在线观看| 性欧美videohd高精| jvid福利在线一区二区| 日本久久黄色| 亚洲性感美女99在线| 麻豆成人免费电影| 激情五月激情综合网| 国产欧美综合在线观看第十页| 国产喂奶挤奶一区二区三区| 亚洲sss视频在线视频| 激情欧美日韩| 精品深夜福利视频| 日韩av大片站长工具| 国产毛片在线| 一级片在线视频| 调教视频vk| 含羞草www国产在线视频| 宅男在线观看免费高清网站| 青青草原国产在线| 成人免费在线播放| 高清shemale亚洲人妖| 亚洲人成网址| 欧美一区二区三区久久精品茉莉花| 亚洲精品久久7777| 国产网红女主播精品视频| 一区二区蜜桃| 精品在线免费视频| 另类欧美日韩国产在线| 国产一区欧美二区| 色婷婷久久久综合中文字幕| 欧美日韩精品一区二区在线播放| 在线观看麻豆| 成人一级视频| 性感女国产在线| 松下纱荣子在线观看| 手机看片久久| 韩国三级大全久久网站| 西瓜成人精品人成网站| 成人综合在线观看| 欧美三级韩国三级日本一级| 日韩黄色影片| aa国产成人| 玖玖玖国产精品| 欧美日韩国产另类一区| 欧美高清免费| 亚洲国产视频一区二区| 性孕妇free特大另类| 久久99精品国产麻豆不卡| 噜噜噜在线观看免费视频日韩 | 国内福利写真片视频在线| 99久久亚洲国产日韩美女| 免费高清不卡av| 爱爱免费视频网站| 国产情侣一区在线| 久久久久久美女精品 | 色狠狠av一区二区三区| 一区视频网站| 懂色av噜噜一区二区三区av| 国产精品毛片久久久久久| 午夜视频国产| 牛牛影视久久网| 中文字幕久久午夜不卡| 久久久久久免费| 美女网站视频在线| 亚洲网站啪啪| 色偷偷免费视频| 亚洲免费观看在线视频| 国产欧美一区二区三区米奇| 亚州av影院| 国产jizzjizz一区二区| 日本成人一区二区三区| 日韩国产高清影视| av激情网站| 最新亚洲精品| 蜜臀久久99精品久久久久久9| 九色视频网站入口| 日韩精品二区| 欧美日韩中文字幕在线| 久久精品国产福利| 自拍自偷一区二区三区| 91在线视频免费观看| 日本v片在线免费观看| 精品一区二区免费看| 男人添女人下部高潮视频在线观看| 蜜桃av一区二区| 在线观看一区日韩| 99久久.com| 欧美白人做受xxxx视频| 国产99久久精品一区二区300| 日本强好片久久久久久aaa| 中文字幕视频在线| 9i在线看片成人免费| 污污的网站在线免费观看| 一区二区三区中文在线| 日韩免费久久| 日本成人一区二区三区| 66久久国产| 日韩欧美国产一区二区在线播放| 国产精选久久| 欧美性色黄大片手机版| 免费看成人哺乳视频网站| 友田真希在线| 成人av综合网| 欧美一区二区三区不卡| 波多野结衣一区| 91大神网址| 国产精品久久毛片av大全日韩| 青春草在线免费视频| 99r国产精品| 红桃成人av在线播放| 9色在线视频网站| 久久免费电影网| 污网站在线观看免费| www.亚洲激情.com| 国产情侣一区在线| 在线观看黄网| 欧美综合视频在线观看| 久久综合av免费| 极品av少妇一区二区| 99国内精品久久久久| 国产天堂素人系列在线视频| 91精品国产综合久久香蕉的特点| 91九色精品| 伦理片一区二区三区| proumb性欧美在线观看| 亚洲精品白浆高清| 日本亚洲精品| 一本色道**综合亚洲精品蜜桃冫| 久久久久久穴| 高清美女视频一区| 国产成人精品一区二区三区四区| 2020国产精品小视频| 波多野结衣av在线| 欧美日韩中文国产| 天天操天天干天天综合网| 97一区二区国产好的精华液| 884aa四虎影成人精品一区| 国产成人精品影视| 男女精品网站| 色屁屁www国产馆在线观看| 国产精品18久久久久久vr| 久久久久亚洲| 国模大尺度视频一区二区| 日日躁夜夜躁人人揉av五月天| 日韩美女在线视频| 99视频资源网| 超碰在线公开免费| 在线看av的网址| 麻豆91在线| 久久av色综合| 日韩一级视频| 全色精品综合影院| 7777精品伊人久久久大香线蕉的| 麻豆91在线播放| 6080成人| 波多野结衣在线网站| 国产在线黄色片| 日韩欧美一区二区在线视频| 日本一区二区动态图| 成人高清免费观看| 亚洲国产网址| 黄色大片在线播放| 2018av男人天堂| 欧美日韩大陆一区二区| 91蜜桃在线观看| 一区二区三区中文字幕| 亚洲国产欧美日韩另类综合 | 日韩1区在线| 一级视频在线免费观看| 色先锋av影音|