亚洲十八**毛片_亚洲综合影院_五月天精品一区二区三区_久久久噜噜噜久久中文字幕色伊伊 _欧美岛国在线观看_久久国产精品毛片_欧美va在线观看_成人黄网大全在线观看_日韩精品一区二区三区中文_亚洲一二三四区不卡

代做3 D printer materials estimation編程

時間:2024-02-21  來源:  作者: 我要糾錯



Project 1: 3D printer materials estimation
Use the template material in the zip file project01.zip in Learn to write your report. Add all your function
definitions on the code.R file and write your report using report.Rmd. You must upload the following three
files as part of this assignment: code.R, report.html, report.Rmd. Specific instructions for these files are
in the README.md file.
The main text in your report should be a coherent presentation of theory and discussion of methods and
results, showing code for code chunks that perform computations and analysis but not code for code chunks
that generate functions, figures, or tables.
Use the echo=TRUE and echo=FALSE to control what code is visible.
The styler package addin is useful for restyling code for better and consistent readability. It works for both
.R and .Rmd files.
The Project01Hints file contains some useful tips, and the CWmarking file contains guidelines. Both are
attached in Learn as PDF files.
Submission should be done through Gradescope.
1 The data
A 3D printer uses rolls of filament that get heated and squeezed through a moving nozzle, gradually building
objects. The objects are first designed in a CAD program (Computer Aided Design) that also estimates how
much material will be required to print the object.
The data file "filament1.rda" contains information about one 3D-printed object per row. The columns are
• Index: an observation index
• Date: printing dates
• Material: the printing material, identified by its colour
• CAD_Weight: the object weight (in grams) that the CAD software calculated
• Actual_Weight: the actual weight of the object (in grams) after printing
Start by loading the data and plotting it. Comment on the variability of the data for different CAD_Weight
and Material.
2 Classical estimation
Consider two linear models, named A and B, for capturing the relationship between CAD_Weight and
Actual_Weight. We denote the CAD_weight for observation i by xi
, and the corresponding Actual_Weight
by yi
. The two models are defined by
• Model A: yi ∼ Normal[β1 + β2xi
, exp(β3 + β4xi)]
• Model B: yi ∼ Normal[β1 + β2xi
, exp(β3) + exp(β4)x
2
i
)]
The printer operator reasons that random fluctuations in the material properties (such as the density) and
room temperature should lead to a relative error instead of an additive error, leading them to model B as an
approximation of that. The basic physics assumption is that the error in the CAD software calculation of
the weight is proportional to the weight itself. Model A on the other hand is slightly more mathematically
convenient, but has no such motivation in physics.
1
Create a function neg_log_like() that takes arguments beta (model parameters), data (a data.frame
containing the required variables), and model (either A or B) and returns the negated log-likelihood for the
specified model.
Create a function filament1_estimate() that uses the R built in function optim() and neg_log_like()
to estimate the two models A and B using the filament1 data. As initial values for (β1, β2, β3, β4) in the
optimization use (-0.1, 1.07, -2, 0.05) for model A and (-0.15, 1.07, -13.5, -6.5) for model B. The inputs of the
function should be: a data.frame with the same variables as the filament1 data set (columns CAD_Weight
and Actual_Weight) and the model choice (either A or B). As the output, your function should return the
best set of parameters found and the estimate of the Hessian at the solution found.
First, use filament1_estimate() to estimate models A and B using the filament1 data:
• fit_A = filament1_estimate(filament1, “A”)
• fit_B = filament1_estimate(filament1, “B”)
Use the approximation method for large n and the outputs from filament1_estimate() to construct an
approximate 90% confidence intervals for β1, β2, β3, and β4 in Models A and B. Print the result as a table
using the knitr::kable function. Compare the confidence intervals for the different parameters and their width.
Comment on the differences to interpret the model estimation results.
3 Bayesian estimation
Now consider a Bayesian model for describing the actual weight (yi) based on the CAD weight (xi) for
observation i:
yi ∼ Normal[β1 + β2xi
, β3 + β4x
2
i
)].
To ensure positivity of the variance, the parameterisation θ = [θ1, θ2, θ3, θ4] = [β1, β2, log(β3), log(β4)] is
introduced, and the printer operator assigns independent prior distributions as follows:
θ1 ∼ Normal(0, γ1),
θ2 ∼ Normal(1, γ2),
θ3 ∼ LogExp(γ3),
θ4 ∼ LogExp(γ4),
where LogExp(a) denotes the logarithm of an exponentially distributed random variable with rate parameter
a, as seen in Tutorial 4. The γ = (γ1, γ2, γ3, γ4) values are positive parameters.
3.1 Prior density
With the help of dnorm and the dlogexp function (see the code.R file for documentation), define and
document (in code.R) a function log_prior_density with arguments theta and params, where theta is the
θ parameter vector, and params is the vector of γ parameters. Your function should evaluate the logarithm
of the joint prior density p(θ) for the four θi parameters.
3.2 Observation likelihood
With the help of dnorm, define and document a function log_like, taking arguments theta, x, and y, that
evaluates the observation log-likelihood p(y|θ) for the model defined above.
3.3 Posterior density
Define and document a function log_posterior_density with arguments theta, x, y, and params, which
evaluates the logarithm of the posterior density p(θ|y), apart from some unevaluated normalisation constant.
2
3.4 Posterior mode
Define a function posterior_mode with arguments theta_start, x, y, and params, that uses optim together
with the log_posterior_density and filament data to find the mode µ of the log-posterior-density and
evaluates the Hessian at the mode as well as the inverse of the negated Hessian, S. This function should
return a list with elements mode (the posterior mode location), hessian (the Hessian of the log-density at
the mode), and S (the inverse of the negated Hessian at the mode). See the documentation for optim for how
to do maximisation instead of minimisation.
3.5 Gaussian approximation
Let all γi = 1, i = 1, 2, 3, 4, and use posterior_mode to evaluate the inverse of the negated Hessian at the
mode, in order to obtain a multivariate Normal approximation Normal(µ,S) to the posterior distribution for
θ. Use start values θ = 0.
3.6 Importance sampling function
The aim is to construct a 90% Bayesian credible interval for each βj using importance sampling, similarly to
the method used in lab 4. There, a one dimensional Gaussian approximation of the posterior of a parameter
was used. Here, we will instead use a multivariate Normal approximation as the importance sampling
distribution. The functions rmvnorm and dmvnorm in the mvtnorm package can be used to sample and evaluate
densities.
Define and document a function do_importance taking arguments N (the number of samples to generate),
mu (the mean vector for the importance distribution), and S (the covariance matrix), and other additional
parameters that are needed by the function code.
The function should output a data.frame with five columns, beta1, beta2, beta3, beta4, log_weights,
containing the βi samples and normalised log-importance-weights, so that sum(exp(log_weights)) is 1. Use
the log_sum_exp function (see the code.R file for documentation) to compute the needed normalisation
information.
3.7 Importance sampling
Use your defined functions to compute an importance sample of size N = 10000. With the help of
the stat_ewcdf function defined in code.R, plot the empirical weighted CDFs together with the unweighted CDFs for each parameter and discuss the results. To achieve a simpler ggplot code, you may find
pivot_longer(???, starts_with("beta")) and facet_wrap(vars(name)) useful.
Construct 90% credible intervals for each of the four model parameters based on the importance sample.
In addition to wquantile and pivot_longer, the methods group_by and summarise are helpful. You may
wish to define a function make_CI taking arguments x, weights, and prob (to control the intended coverage
probability), generating a 1-row, 2-column data.frame to help structure the code.
Discuss the results both from the sampling method point of view and the 3D printer application point of
view (this may also involve, e.g., plotting prediction intervals based on point estimates of the parameters,
and plotting the importance log-weights to explain how they depend on the sampled β-values).
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

標簽:

掃一掃在手機打開當前頁
  • 上一篇:代寫game of Bingo cards
  • 下一篇:代寫PLAN60722 – Urban Design Project
  • 無相關信息
    昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級風景名勝區
    昆明西山國家級風景名勝區
    昆明旅游索道攻略
    昆明旅游索道攻略
  • 短信驗證碼平臺 理財 WPS下載

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    国产精品久线在线观看| 麻豆理论在线观看| 绿色成人影院| 久久精品99国产国产精| 欧美午夜激情视频| 色哟哟一区二区| 都市激情亚洲色图| 欧美日韩精品电影| 一级成人国产| 亚洲一区图片| 久久久噜噜噜久噜久久综合| 国产精品每日更新| 麻豆tv入口在线看| 美女91精品| 色综合久久久网| 日韩欧美综合在线| 欧美性大战久久| www.天天操| 老司机精品视频在线观看6| 欧美高清免费| 99pao成人国产永久免费视频| 国产精品亚洲欧美| 日韩精品欧美成人高清一区二区| 欧美a一区二区| 美女久久久精品| 国产一区欧美日韩| 亚洲福利久久| 首页综合国产亚洲丝袜| 日韩成人一级| 天堂成人在线| 五月激情综合婷婷| 欧美顶级少妇做爰| 成人激情综合| 成人亚洲一区二区一| 久热av在线| 欧美美女啪啪| 亚洲免费影视| 国产色一区二区| 成人满18在线观看网站免费| av片哪里在线观看| 日韩精品1区| 精品一区二区在线视频| 国产美女娇喘av呻吟久久| 91美女视频网站| 男人天堂综合| 超碰成人久久| 成人精品电影在线观看| 欧美性jizz18性欧美| 国产福利视频在线| 精灵使的剑舞无删减版在线观看| 9765激情中文在线| 91伊人久久大香线蕉| 欧美日韩国产系列| 老牛精品亚洲成av人片| 岛国精品视频在线播放| 日韩av影院| 在线观看亚洲专区| 欧美激情15p| 国产毛片精品视频| 日韩欧美一区二区久久婷婷| 中文字幕中文字幕在线中文字幕三区| 99久久亚洲国产日韩美女 | 偷拍自拍在线看| 懂色aⅴ精品一区二区三区| 精品国内自产拍在线观看视频 | 亚洲综合色噜噜狠狠| 亚州色图欧美色图| 99精品全国免费观看视频软件| 在线观看日产精品| 欧美日韩中文字幕综合视频| wwwwxxxx在线观看| 99久久精品费精品国产一区二区| 午夜国产在线| 激情丁香综合| 欧美日韩国产系列| 欧美一区二区三| 国产精品成人免费在线| 欧美一区二区视频免费观看| 8848成人影院| 性感美女极品91精品| 成人午夜视屏| 国产大片一区| 五月婷婷综合激情| 日韩成人影音| 一区二区三区精品在线观看| 2024最新电影免费在线观看| 欧美黄污视频| 7777精品伊人久久久大香线蕉的 | 在线观看亚洲a| 色综合蜜月久久综合网| 手机福利小视频在线播放| 久久久久久日产精品| 欧美激情亚洲| 免费一级欧美在线观看视频| 欧美成人vps| 激情图区综合网| 国产女人在线观看| 成人污视频在线观看| 电影天堂最新网址| 久久99精品国产麻豆不卡| 久久经典视频| 性感少妇一区| 国产美女高潮在线| 国产精品中文字幕日韩精品| 亚洲日本一区二区三区在线观看| 99精品综合| 视频在线这里都是精品| 欧美性猛交xxxxxx富婆| 真实国产乱子伦精品一区二区三区| 欧美日韩精品综合在线| 日韩系列欧美系列| 你懂的免费在线观看| 美日韩一区二区| 狠狠色噜噜狠狠狠狠97| 一区二区影视| 3p在线观看| 欧洲av一区二区嗯嗯嗯啊| 蜜臀久久久久久久| 亚洲影院天堂中文av色| 激情综合色综合啪啪开心| 久久蜜桃精品| 污污网站在线| 亚洲永久网站| 深夜视频在线免费| 亚洲精品影视| 欧美1—12sexvideos| av成人网在线| 岛国精品视频在线播放| 久久福利精品| 男人的天堂免费在线视频| 在线成人免费视频| 日韩成人三级| a天堂中文在线官网在线| 欧美日韩国产精品自在自线| 99国产精品99久久久久久粉嫩| 亚洲欧洲成人| 激情综合色综合久久| 久久久加勒比| 独立日3在线观看完整版| 亚洲品质自拍视频| 99久久久久免费精品国产| 欧美h版在线| 男男互摸gay网站| caoporen国产精品视频| 一区三区自拍| fc2ppv国产精品久久| 国产一级视频| 91精品国产调教在线观看| 成年网站免费| 欧洲av在线精品| 国产99久久久久| 欧美午夜在线视频| 这里视频有精品| 欧美成人性生活视频| 成人观看网站a| 国产精品理论在线观看| 亚洲婷婷在线| 男生女生差差差的视频在线观看| 色狠狠色狠狠综合| 99精品偷自拍| 欧美日韩少妇| 国产第一亚洲| 午夜在线观看91| 欧美无砖专区一中文字| 亚洲激情一区| 欧美成人自拍| 日韩亚洲精品在线| 亚洲天堂激情| 成人免费视频观看| 天堂在线视频| 91精品国产日韩91久久久久久| 疯狂做受xxxx欧美肥白少妇 | 久久综合成人精品亚洲另类欧美| 欧美精品成人| 偷窥自拍亚洲色图精选| 国产亚洲高清在线观看| 福利片一区二区| 日韩在线视频一区二区三区| 亚洲国产欧美日本视频| 国产精品久久久久av电视剧| 麻豆tv在线| 成人精品福利| 91麻豆精品久久久久蜜臀| 亚洲第一成人在线| 国产亚洲视频系列| 国产成人精品影视| 国产视频一区不卡| 蜜桃视频一区二区三区| 欧美在线免费| 999国产精品| 亚洲国产一区二区三区网站| 亚洲天堂网站| 美女视频免费精品| 欧美aaaaa成人免费观看视频| 日韩午夜免费| 外国成人免费视频| 综合在线一区| 看国产成人h片视频| 国产精品免费av| 久久久国产一区二区三区四区小说|