亚洲十八**毛片_亚洲综合影院_五月天精品一区二区三区_久久久噜噜噜久久中文字幕色伊伊 _欧美岛国在线观看_久久国产精品毛片_欧美va在线观看_成人黄网大全在线观看_日韩精品一区二区三区中文_亚洲一二三四区不卡

代寫 CSCI1440/2440 Homework 3

時間:2024-02-16  來源:  作者: 我要糾錯


Homework 3: Myerson’s Lemma CSCI1440/2440

2024-02-08

Due Date: Tuesday, February 20, 2024. 11:59 PM.

We encourage you to work in groups of size two. Each group need only submit one solution. Your submission must be typeset using LATEX. Please submit via Gradescope with you and your partner’s Banner ID’s and which course you are taking.

For 1000-level credit, you need only solve the first three problems. For 2000-level credit, you should solve all four problems.

1 The All-Pay Auction

In an all-pay auction, the good is awarded to the highest bidder, but rather than only the winner paying, all bidders i must pay their bid: i.e., ui = vixi − pi.

Using the envelope theorem, derive (necessary conditions on) the symmetric equilibrium of a symmetric all-pay auction in which the bidders’ values are drawn i.i.d. from some bounded distribution F.

2 Allocation Rule Discontinuity

Fix a bidder i and a profile v−i. Myerson’s lemma tells us that incen-

tive compatibility and individual rationality imply two properties: 1. Allocation monotonicity: one’s allocation should not decrease as

 one’s value vi increases.

2. Myerson’s payment formula:

Z vi 0

pi(vi,v−i) = vixi(vi,v−i)−

xi(z,v−i)dz,

∀i ∈ [n],∀vi ∈ Ti,∀v−i ∈ T−i. (1)

In a second-price auction, the allocation rule is piecewise constant on any continuous interval. That is, bidder i’s allocation function is a Heaviside step function,1 with discontinuity at vi = b∗, where b∗ is the highest bid among all bidders other than i (i.e., b∗ = maxj̸=i vj):

1, if vi ≥ b∗ xi(vi,v−i) =

0, otherwise. Observe that ties are broken in favor of bidder i.

1 This is the canonical step function, whose range is [0, 1].

 

Given this allocation rule, the payment formula tells us what i should pay, should they be fortunate enough to win:

Z vi 0

pi(vi,v−i) = vixi(vi,v−i)−

?Z b∗

xi(z,v−i)dz

=vi(1)−

= vi(1)−(0+vi −b∗)

= b∗.

Alternatively, by integrating along the y-axis (i.e., R f (b) f −1 (y)dy),2

f (a)

bidder i’s payment can be expressed as follows: for ε ∈ (0, 1),

2 As the allocation function, call it f , is not invertible, but is weakly

increasing and right continuous, we define f(−1)(y) = inf{x | f(x) ≥ y}: e.g., f−1(1/2) = b∗.

Z vi ?dx (z,v )? pi(vi,v−i) = z i −i dz

Z ε Z 1−ε ?dxi(z,v−i)? = z(0)dz+ z

Z vi ? 0dz+ ∗ 1dz

0b

homework 3: myerson’s lemma 2

0 dz

0 ε dz 1−ε Z1−ε ∗

= bdy ε

∗ Z 1−ε =b dy ε

= b∗,

because the inverse of the allocation function is b∗, for all y ∈ (0, 1),

and limε→0 R 1−ε dy = 1. Intuitively, we can conclude the following ε

from this derivation: pi(vi, v−i) = b∗ · [jump in xi(·, v−i) at b∗]. Suppose that the allocation rule is piecewise constant on the con-

tinuous interval [0, vi], and discontinuous at points {z1, z2, . . . , zl} in this interval. That is, there are l points at which the allocation jumps from x(zj, v−i) to x(zj+1, v−i) (see Figure 1). Assuming this “jumpy” allocation rule is weakly increasing in value, prove that Myerson’s payment rule can be expressed as follows:

l

pi(vi, v−i) = ∑ zj · ?jump in xi(·, v−i) at zj? . (2) j=1

3 Sponsored Search Extension

In this problem, we generalize our model of sponsored search to include an additional quality parameter βi > 0 that characterizes each bidder i. With this additional parameter, we can view αj as the probability a user views an ad, and βi as the conditional probability that a user then clicks, given that they are already viewing the ad. Note that αj, the view probability, depends only on the slot j, not

Z 1

dz+ z(0)dz

 

xi(z3, v−i) xi(z2, v−i) xi(z1, v−i)

Figure 1: Allocation Rule. Shaded area represents payment.

z1z2 z3 Value, vi

on the advertiser occupying that slot, while βi, the conditional click probablity, explicitly depends on the advertiser i.

In this model, given bids v, bidder i’s utility is given by: ui(v) = βivix(v) − p(v)

So if bidder i is allocated slot j, their utility is: ui(v) = βiviαj − p(v)

Like click probabilities, you should assume qualities are public, not private, information.

1.

2.

4

optimization. The problem can be stated as follows:

There is a knapsack, which can hold a maximum weight of W ≥ 0. There are n items; each item i has weight wi ≤ W and value vi ≥ 0. The goal is to find a subset of items of maximal total value with total weight no more than W.

Written as an integer linear program,

n

max ∑ xivi

x i=1

Define total welfare for this model of sponsored search, and then describe an allocation rule that maximizes total welfare, given the bidders’ reports. Justify your answer.

Argue that your allocation rule is monotonic, and use Myerson’s characterization lemma to produce a payment rule that yields a DSIC mechanism for this sponsored search setting.

The Knapsack Auction

The knapsack problem is a famous NP-hard3 problem in combinatorial

3 There are no known polynomial-time solutions.

homework 3: myerson’s lemma 3

Allocation, xi(vi, v−i)

 

subject to

n

∑xiwi ≤W i=1

xi∈{0,1}, ∀i∈[n]

The key difference between optimization and mechanism design problems is that in mechanism design problems the constants (e.g., vi and wi) are not assumed to be known to the center / optimizer; on the contrary, they must be elicted, after which the optimization problem can then be solved as usual.

With this understanding in mind, we can frame the knapsack problem as a mechanism design problem as follows. Each bidder

has an item that they would like to put in the knapsack. Each item is characterized by two parameters—a public weight wi and a private value vi. An auction takes place, in which bidders report their values. The auctioneer then puts some of the items in the knapsack, and the bidders whose items are selected pay for this privilege. One real- world application of a knapsack auction is the selling of commercial snippets in a 5-minute ad break (e.g., during the Superbowl).4

Since the problem is NP-hard, we are unlikely to find a polynomial- time welfare-maximizing solution. Instead, we will produce a polynomial- time, DSIC mechanism that is a 2-approximation of the optimal wel-

fare. In particular, for any set possible set of values and weights, we

aim to always achieve at least 50% of the optimal welfare.

We propose the following greedy allocation scheme: Sort the bid- ders’ items in decreasing order by their ratios vi/wi, and then allocate items in that order until there is no room left in the knapsack.

1. Show that the greedy allocation scheme is not a 2-approximation by producing a counterexample where it fails to achieve 50% of the optimal welfare.

Alice proposes a small improvement to the greedy allocation scheme. Her improved allocation scheme compares the welfare achieved by the greedy allocation scheme to the welfare achieved

by simply putting the single item of highest value into the knapsack.5 She then uses whichever of the two approaches achieves greater wel- fare. It can be shown that this scheme yields a 2-approximation of optimal welfare. We will use it to create a mechanism that satisfies individual rationality and incentive compatibility.

2. Argue that Alice’s allocation scheme is monotone.

3. Now use Myerson’s payment formula to produce payments such that the resulting mechanism is DSIC and IR.

4 Here, the weight of a commercial is its time in seconds.

homework 3: myerson’s lemma 4

5 Note that weakly greater welfare could be achieved by greedily filling the knapsack with items in decreasing order of value until no more items

fit. We do not consider this scheme, because it is unnecessary to achieve

a 2-approximation; however, it is an obvious heuristic that anyone solving this problem in the real world
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

標簽:

掃一掃在手機打開當前頁
  • 上一篇:代寫ACP Assignment 1 Specificaons
  • 下一篇:代做ECON 323 Econometric Analysis 2
  • 無相關信息
    昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級風景名勝區
    昆明西山國家級風景名勝區
    昆明旅游索道攻略
    昆明旅游索道攻略
  • 短信驗證碼平臺 理財 WPS下載

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    91亚洲永久精品| 波多野结衣在线观看| 一级一片免费视频| 两个人看的免费完整在线观看| 男人在线视频资源| 人成在线免费视频| 黄色小网站在线观看| 国产美女高潮在线观看| 成人亚洲免费| **爰片久久毛片| 日韩欧美字幕| 日韩亚洲国产欧美| 国产毛片精品一区| 中文字幕高清不卡| 日韩欧美福利视频| 蜜桃av麻豆av天美av免费| 高清欧美精品xxxxx在线看| 粉嫩一区二区三区国产精品| 国产传媒av在线| 日本成人精品| 欧美精品国产一区二区| 国产一区中文字幕| 1000部国产精品成人观看| 91福利国产精品| 成人精品3d动漫| 欧美成年黄网站色视频| 日韩漫画puputoon| 日韩av黄色在线| 国产毛片一区| 久久久久久黄色| 欧美色爱综合网| 在线看片你懂得| 韩国成人漫画| 日韩精品中文字幕第1页| 日本成人中文字幕| 成人免费小视频| 影视先锋av在线| 69xxx在线| 精品精品国产毛片在线看| 在线视频亚洲| 国产精品丝袜91| 日韩欧美国产午夜精品| 欧美13一16娇小xxxx| 日韩在线观看一区二区三区| 国产伊人精品| 国产欧美日韩在线视频| 88在线观看91蜜桃国自产| 国产福利电影在线| 欧美日韩黄网站| 亚洲综合99| 亚洲欧美日韩中文播放 | 综合欧美亚洲| 中文久久精品| 国产精品久久久久久久久免费丝袜 | 天天射综合网站| 国产日韩另类视频一区| 亚洲最大黄网| 国产人久久人人人人爽| 精品免费日韩av| 91九色美女在线视频| 色777狠狠狠综合伊人| 不卡的av网站| 欧美一区中文字幕| av中文字幕在线观看第一页 | 羞羞视频网站在线观看| 9999精品视频| 男人的天堂久久精品| 亚洲一二三级电影| 男女污视频在线观看| 都市激情亚洲| 处破女av一区二区| 日韩欧美高清在线| 国产伦久视频在线观看| 伊人久久大香线蕉综合热线| 亚洲欧美日韩系列| 偷拍自拍在线| 精品国产123区| 国产欧美一二三区| 三级网站在线| 久久99精品久久久久久欧洲站 | 国产调教精品| 成人蜜臀av电影| 国产视频97| gogo人体一区| 成人综合婷婷国产精品久久蜜臀| 欧美一区二区免费视频| 色综合天天色| 国产乱妇无码大片在线观看| 日韩精品一区二区三区蜜臀| 国产成人精品一区二区三区视频| 日本中文字幕不卡| 欧美一区三区二区| 亚洲日韩中文字幕一区| 国产成人精品免费在线| 99re热在线观看| 精品视频在线播放一区二区三区| 懂色av一区二区三区免费观看 | 国产精品久久久久久久蜜臀| 欧美视频综合| 亚洲综合婷婷| 欧美日韩一区二区在线观看视频| 日韩大尺度黄色| 国产在线一区观看| 波多野吉衣av| 国产午夜一区| 亚洲午夜激情av| 69av成人| 国产成人丝袜美腿| 老司机aⅴ毛片免费观看| 天堂一区二区三区四区| 中文字幕一区二区三区色视频| 男人天堂手机在线| 日韩高清中文字幕一区| 3d动漫成人在线| 成人情趣视频网站| 一本久道中文字幕精品亚洲嫩| 日产精品一区| 久久伊人蜜桃av一区二区| jyzzz在线观看视频| 性感少妇一区| 精品国产乱码91久久久久久网站| 秋霞影院一区二区三区| 亚洲国产人成综合网站| 福利一区视频| 日韩一区在线播放| 性感女国产在线| 久久综合国产精品| 欧美日韩在线观看一区二区| 国语自产精品视频在线看抢先版结局| 美国一区二区三区在线播放| 黄色网址入口| 五月综合激情| 欧美成人性福生活免费看| 美国成人xxx| 日韩欧美亚洲范冰冰与中字| 亚洲热av色在线播放| 亚洲精品成人少妇| 电影天堂国产精品| 国产精品无圣光一区二区| 色吧亚洲日本| 国产丝袜欧美中文另类| 九九色在线视频| 国产欧美日韩在线视频| 亚洲精品成人图区| 亚洲欧洲av在线| 久久婷婷五月综合色丁香| 国产精品免费看| a视频免费看| 99成人精品| 先锋影音欧美性受| 国产在线观看免费一区| 日本视频在线播放| 99九九99九九九视频精品| 91吃瓜在线观看| 国产欧美中文在线| 欧美videos粗暴| 桥本有菜亚洲精品av在线| 欧产日产国产精品视频| 17c精品麻豆一区二区免费| 日韩五码电影| 色素色在线综合| 亚洲国产一区二区在线观看 | 99久久精品国产毛片| 交100部在线观看| 亚洲女女做受ⅹxx高潮| 丁香五月缴情综合网| 91精品国产高清一区二区三区| 欧美国产激情| 成人欧美亚洲| 国产欧美精品在线观看| 麻豆精品在线| 日韩精品在线网站| 日本sm残虐另类| av色在线观看| 亚洲成人精品一区| 97精品视频| 黄色在线播放| 国产精品美女视频| 日韩欧美黄色| 中国一级特黄毛片大片| 成人黄色一级视频| 亚洲91在线| 欧美成人激情免费网| 日韩不卡一区二区| 国产在线美女| 欧美日韩亚洲综合在线| 午夜在线一区二区| 免费**毛片在线| 一个色妞综合视频在线观看| 久久国产电影| 亚洲搞黄视频| 精品久久久一区二区| 韩日在线一区| 不卡av免费观看| 欧美日韩一二三| 看电视剧不卡顿的网站| 日本成人福利| 国产黄视频在线观看| 久久久精品天堂| 日韩在线观看|